Mechanism of Eye

Mammalian eye owes itself completely to the task of focusing light onto the retina. This light causes chemical changes in the photosensitive cells of the retina, the products of which trigger nerve impulses which travel to the brain.


Bookmark and Share  Subscribe in a reader
In the human eye, light enters the pupil and is focused on the retina by the lens. Light-sensitive nerve cells called rods (for brightness), cones (for color) and non-imaging ipRGC (intrinsincally photosensitive retinal ganglion cells) react to the light. They interact with each other and send messages to the brain. The rods and cones enable vision. The ipRGCs enable entrainment to the earth's 24-hour cycle, resizing of the pupil and acute suppression of the pineal hormone melatonin.

Retina
The retina contains one form of photosensitive cells important to vision—rods and cones—in addition to the photosensitive ganglion cells involved in circadian adjustment but probably not involved in vision. Though structurally and metabolically similar, the functions of rods and cones are quite different. Rod cells are highly sensitive to light, allowing them to respond in dim light and dark conditions; however, they cannot detect color differences. These are the cells that allow humans and other animals to see by moonlight, or with very little available light (as in a dark room). Cone cells, conversely, need high light intensities to respond and have high visual acuity. Different cone cells respond to different wavelengths of light, which allows an organism to see color. The shift from cone vision to rod vision is why the darker conditions become, the less color objects seem to have.

The differences between rods and cones are useful; apart from enabling sight in both dim and light conditions, they have further advantages. The fovea, directly behind the lens, consists of mostly densely-packed cone cells. The fovea gives humans a highly detailed central vision, allowing reading, bird watching, or any other task which primarily requires staring at things. Its requirement for high intensity light does cause problems for astronomers, as they cannot see dim stars, or other celestial objects, using central vision because the light from these is not enough to stimulate cone cells. Because cone cells are all that exist directly in the fovea, astronomers have to look at stars through the "corner of their eyes" (averted vision) where rods also exist, and where the light is sufficient to stimulate cells, allowing an individual to observe faint objects.

Rods and cones are both photosensitive, but respond differently to different frequencies of light. They contain different pigmented photoreceptor proteins. Rod cells contain the protein rhodopsin and cone cells contain different proteins for each color-range. The process through which these proteins go is quite similar — upon being subjected to electromagnetic radiation of a particular wavelength and intensity, the protein breaks down into two constituent products. Rhodopsin, of rods, breaks down into opsin and retinal; iodopsin of cones breaks down into photopsin and retinal. The breakdown results in the activation of Transducin and this activates cyclic GMP Phosphodiesterase, which lowers the number of open Cyclic nucleotide-gated ion channels on the cell membrane, which leads to hyperpolarization; this hyperpolarization of the cell leads to decreased release of transmitter molecules at the synapse.

Differences between the rhodopsin and the iodopsins is the reason why cones and rods enable organisms to see in dark and light conditions — each of the photoreceptor proteins requires a different light intensity to break down into the constituent products. Further, synaptic convergence means that several rod cells are connected to a single bipolar cell, which then connects to a single ganglion cell by which information is relayed to the visual cortex. This convergence is in direct contrast to the situation with cones, where each cone cell is connected to a single bipolar cell. This divergence results in the high visual acuity, or the high ability to distinguish detail, of cone cells compared to rods. If a ray of light were to reach just one rod cell, the cell's response may not be enough to hyperpolarize the connected bipolar cell. But because several "converge" onto a bipolar cell, enough transmitter molecules reach the synapses of the bipolar cell to hyperpolarize it.

Furthermore, color is distinguishable due to the different iodopsins of cone cells; there are three different kinds, in normal human vision, which is why we need three different primary colors to make a color space.

A small percentage of the ganglion cells in the retina contain melanopsin and, thus, are themselves photosensitive. The light information from these cells is not involved in vision and it reaches the brain not directly via the optic nerve but via the retinohypothalamic tract, the RHT. By way of this light information, the body clock's inherent approximate 24-hour cycling is adjusted daily to nature's light/dark cycle. Signals from these photosensitive ganglion cells have at least two other roles in addition. They exercise control over the size of the pupil, and they lead to acute suppression of melatonin secretion by the pineal gland.

Primate Evolution and Human Disease

Ajit Varki is Co-Director of the newly established UCSD / Salk Center for Academic Research and Training in Anthropogeny, multidisciplinary approach to understanding human origins, which involves scientists from across San Diego and all over the world. Here he explores the genetic approach to understanding human disease, in the light of genetic changes that occurred during our evolutionary history.

Human cloning

How human clones will be made. Truth about human cloning research and how science is leaving human cloning technology behind. Arguments for and against human cloning and why adult stem cell research is becoming more important in health care / medical research. Why human cloning research is running out of cash. Why human cloning research is looking like a last century answer to medical research compared to adult stem cell technology in organ regeneration and repair. Video comment by Dr Patrick Dixon, physician, Futurist, author of The Genetic Revolution and Futurewise.



  Subscribe in a reader




Human cloning - part two - why investors don't like cloning

Stem Cell therapy in Heart disease

Stem Cell therapy is a natural healing process Bone marrow-resident stem cells are exposed to a secretion of growth factors and differentiate into angiogenic cell precursors also known as ACPs.Buildup of plaque obstructs the blood flow in the artery,leading to a lack of sufficient blood and nutrients supply to the heart,ACPs attracted to the ischemic area by growth factors migate through the vessel wall into the damaged tissue.then form new blood vessels and also repair the damaged tissue.For the treatment ACPs will be increased in the laboratory and implanted back into the body by standard catheterization.The catheter is inserted into the coronary vessel until it reaches the blocked area.The doctor will infiliate the balloon and use an attached syringe to inject the cells in the ischemic area.ACPs possess the ability to differentiate into endothelial cells involved in the forming of new blood vessels and the repair of existing vessels.This technology is very safe and can alleviate symptoms that impair the quality of life of patients who suffer from severe heart disease

Nuclear Transfer

Nuclear Transfer is a form of cloning. The steps involve removing the DNA from an oocyte(unfertilized egg), and injecting the nucleus which contains the DNA to be cloned. In rare instances, the newly constructed cell will divide normally, replicating the new DNA while remaining in a pluripotent state. If the cloned cells are placed in the uterus of a female mammal, a cloned organism develops to term in rare instances. This is how Dolly the Sheep and many other species were cloned. Alternatively, if cells are extracted from the cloned cells during very early embryonic stages (blastocyst or morula), embryonic stem cells can be created. These cells can be grown in laboratories indefinitely and can theoretically be made into any of the 200+ cell types in the mammalian body, and thus are an extraordinary tool for biologists as well as a therapeutic agent with the potential to treat currently untreatable medical conditions.


Tools & Reagents
Nuclear transfer is a delicate process that is a major hurdle in the development of cloning technology! Materials used in this procedure are a microscope, a holding pipette (small vacuum) to keep the oocyte in place, and a micropipette (hair-thin needle) capable of extracting the nucleus of a cell using a vacuum. For some species, such as mouse, a drill is used to pierce the outer layers of the oocyte.

Various chemical reagents are used to increase cloning efficiency. Microtubule inhibitors, such as nocodazole, are used to arrest the oocyte in M phase, during which its nuclear membrane is dissolved. Chemicals are also used to stimulate oocyte activation.

Irritable Bowel Syndrome

Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by mild to severe abdominal pain, discomfort, bloating and alteration of bowel habits. In some cases, the symptoms are relieved by bowel movements.Diarrhea or constipation may predominate, or they may alternate (classified as IBS-D, IBS-C or IBS-A, respectively). IBS may begin after an infection (post-infectious, IBS-PI) or a stressful life event. Other functional or pain disorders and certain psychological conditions are more common in those with IBS.



Although there is no cure for IBS, there are treatments which attempt to relieve symptoms, including dietary adjustments, medication and psychological interventions. Patient education and a good doctor-patient relationship are also important.

Several conditions may present as IBS including celiac disease, mild infections, parasitic infections like giardiasis several inflammatory bowel diseases, functional chronic constipation and chronic functional abdominal pain. In IBS, routine clinical tests yield no abnormalities, though the bowels may be more sensitive to certain stimuli, such as balloon insufflation testing. The exact cause of IBS is unknown. The most common theory is that IBS is a disorder of the interaction between the brain and the gut, although there may also be abnormalities in the gut flora or the immune system



The UCSD School of Medicine and the Diana Padelford Binkley Foundation bring you the newest installments of this innovative series targeted at successfully managing pain in women. Studies show women often receive inadequate care as pain manifests uniquely in the sexes and requires distinctive treatment strategies. In this program, Emeran A. Mayer, M.D., Director UCLA Center for Neurovisceral Sciences and Women's Health, talks about irritable bowel syndrome. Series: Pain Management in Women Over the Lifecycle

Cell Membrane

Cell membrane (also called the plasma membrane, plasmalemma, or "phospholipid bilayer") is a selectively permeable lipid bilayer found in all cells. It contains a wide variety of biological molecules, primarily proteins and lipids, which are involved in a vast array of cellular processes such as cell adhesion, ion channel conductance and cell signaling. The plasma membrane also serves as the attachment point for both the intracellular cytoskeleton and, if present, the cell wall.


Function
The cell membrane surrounds the cytoplasm of a cell and, in animal cells, physically separates the intracellular components from the extracellular environment, thereby serving a function similar to that of skin. In fungi, some bacteria, and plants, an additional cell wall forms the outermost boundary; however, the cell wall plays mostly a mechanical support role rather than a role as a selective boundary. The cell membrane also plays a role in anchoring the cytoskeleton to provide shape to the cell, and in attaching to the extracellular matrix to help group cells together in the formation of tissues.


The barrier is selectively permeable and able to regulate what enters and exits the cell, thus facilitating the transport of materials needed for survival. The movement of substances across the membrane can be either passive, occurring without the input of cellular energy, or active, requiring the cell to expend energy in moving it. The membrane also maintains the cell potential.

Specific proteins embedded in the cell membrane can act as molecular signals that allow cells to communicate with each other. Protein receptors are found ubiquitously and function to receive signals from both the environment and other cells. These signals are transduced into a form that the cell can use to directly effect a response. Other proteins on the surface of the cell membrane serve as "markers" that identify a cell to other cells. The interaction of these markers with their respective receptors forms the basis of cell-cell interaction in the immune system.

Structure
Lipid bilayer
The cell membrane consists primarily of a thin layer of amphipathic phospholipids which spontaneously arrange so that the hydrophobic "tail" regions are shielded from the surrounding polar fluid, causing the more hydrophilic "head" regions to associate with the cytosolic and extracellular faces of the resulting bilayer. This forms a continuous, spherical lipid bilayer approximately 7 nm thick, barely discernible with a transmission electron microscope.

The arrangement of hydrophilic and hydrophobic heads of the lipid bilayer prevent polar solutes (e.g. amino acids, nucleic acids, carbohydrates, proteins, and ions) from diffusing across the membrane, but generally allows for the passive diffusion of hydrophobic molecules. This affords the cell the ability to control the movement of these substances via transmembrane protein complexes such as pores and gates.

Flippases and Scramblases concentrate phosphatidyl serine, which carries a negative charge, on the inner membrane. Along with NANA, this creates an extra barrier to charged moities moving through the membrane.

Membranes serve diverse functions in eukaryotic and prokaryotic cells. One important role is to regulate the movement of materials into and out of cells. The phospholipid bilayer structure (fluid mosaic model) with specific membrane proteins accounts for the selective permeability of the membrane and passive and active transport mechanisms. In addition, membranes in prokaryotes and in the mitochondria and chloroplasts of eukaryotes facilitate the synthesis of ATP through chemiosmosis.

Integral membrane proteins

The cell membrane contains many integral membrane proteins, which pepper the entire surface. These structures, which can be visualized by electron microscopy or fluorescence microscopy, can be found on the inside of the membrane, the outside, or membrane spanning. These may include integrins, cadherins, desmosomes, clathrin-coated pits, caveolaes, and different structures involved in cell adhesion.

Membrane skeleton

The cytoskeleton is found underlying the cell membrane in the cytoplasm and provides a scaffolding for membrane proteins to anchor to, as well as forming organelles that extend from the cell. Anchoring proteins restricts them to a particular cell surface — for example, the apical surface of epithelial cells that line the vertebrate gut — and limits how far they may diffuse within the bilayer. The cytoskeleton is able to form appendage-like organelles, such as cilia, which are microtubule-based extensions covered by the cell membrane, and filopodia, which are actin-based extensions. These extensions are ensheathed in membrane and project from the surface of the cell in order to sense the external environment and/or make contact with the substrate or other cells. The apical surfaces of epithelial cells are dense with actin-based finger-like projections known as microvilli, which increase cell surface area and thereby increase the absorption rate of nutrients. Localized decoupling of the cytoskeleton and cell membrane results in formation of a bleb.

Cleft Palate

Cleft lip and cleft palate, which can also occur together as cleft lip and palate are variations of a type of clefting congenital deformity caused by abnormal facial development during gestation. This type of deformity is sometimes referred to as a cleft. A cleft is a sub-division in the body's natural structure, regularly formed before birth. A cleft lip or palate can be successfully treated with surgery soon after birth. Cleft lips or palates occur in somewhere between one in 600-800 births.





The term harelip is widely used to describe the condition. The Chinese word for cleft lip is tuchun, literally "harelip."

If only skin tissue is affected one speaks of cleft lip. Cleft lip is formed in the top of the lip as either a small gap or an indentation in the lip (partial or incomplete cleft) or continues into the nose (complete cleft). Lip cleft can occur as one sided (unilateral) or two sided (bilateral). It is due to the failure of fusion of the maxillary and medial nasal processes (formation of the primary palate).

Cholecystectomy (Gallbladder Removal)


Cholecystectomy is the surgical removal of the gallbladder. Despite the development of non-surgical techniques, it is the most common method for treating symptomatic gallstones, although there are other indications for the procedure, including carcinoma. Each year more than 500,000 Americans have gallbladder surgery. Surgery options include the standard procedure, called laparoscopic cholecystectomy, and an older more invasive procedure, called open cholecystectomy. A cholecystectomy is performed when attempts to treat gallstones with ultrasound to shatter the stones (lithotripsy) or medications to dissolve them have not proved feasible.


Bookmark and Share  Subscribe in a reader

HIV virus entry into T cells

HIV enters macrophages and CD4+ T cells by the adsorption of glycoproteins on its surface to receptors on the target cell followed by fusion of the viral envelope with the cell membrane and the release of the HIV capsid into the cell.
Entry to the cell begins through interaction of the trimeric envelope complex (gp160 spike) and both CD4 and a chemokine receptor (generally either CCR5 or CXCR4, but others are known to interact) on the cell surface. gp120 binds to integrin α4β7 activating LFA-1 the central integrin involved in the establishment of virological synapses, which facilitate efficient cell-to-cell spreading of HIV-1. The gp160 spike contains binding domains for both CD4 and chemokine receptors.The first step in fusion involves the high-affinity attachment of the CD4 binding domains of gp120 to CD4.

Bookmark and Share  Subscribe in a reader

Colon Cancer Cell

Colorectal cancer, also called colon cancer or large bowel cancer, includes cancerous growths in the colon, rectum and appendix. It is the third most common form of cancer and the second leading cause of cancer-related death in the Western world. Colorectal cancer causes 655,000 deaths worldwide per year, including about 16,000 in the UK, where it is the second most common site (after lung) to cause cancer death. Many colorectal cancers are thought to arise from adenomatous polyps in the colon. These mushroom-like growths are usually benign, but some may develop into cancer over time. The majority of the time, the diagnosis of localized colon cancer is through colonoscopy. Therapy is usually through surgery, which in many cases is followed by chemotherapy.


Bookmark and Share  Subscribe in a reader

Symptoms
The first symptoms of colon cancer are usually vague, like weight loss and fatigue (tiredness). Local (bowel) symptoms are rare until the tumor has grown to a large size. Generally, the nearer the tumor is to the anus, the more bowel symptoms there will be.

Symptoms and signs are divided into local, constitutional and metastatic.


Local symptoms

* Change in bowel habits
o Change in frequency (constipation and/or diarrhea),
o Feeling of incomplete defecation (tenesmus) and reduction in diameter of stool, both characteristic of rectal cancer,
o Change in the appearance of stools :
+ Bloody stools or rectal bleeding
+ Stools with mucus

+ Black, tar-like stool (melena), more likely related to upper gastrointestinal eg stomach or duodenal disease
* Bowel obstruction causing bowel pain, bloating and vomiting of stool-like material.
* A tumor in the abdomen, felt by patients or their doctors.
* Symptoms related to invasion by the cancer of the bladder causing hematuria (blood in the urine) or pneumaturia (air in the urine), or invasion of the vagina causing smelly vaginal discharge. These are late events, indicative of a large tumor.

Constitutional (systemic) symptoms

* Unexplained weight loss, probably the most common symptom, caused by lack of appetite
* Anemia, causing dizziness, fatigue and palpitations. Clinically, there will be pallor and blood tests will confirm the low hemoglobin level.

Metastatic symptoms

* Liver metastases, causing :
o Jaundice.
o Pain in the abdomen, more often the upper part of epigastrium or right side of the abdomen
o liver enlargement, usually felt by a doctor.
* Blood clots in the veins and arteries, a paraneoplastic syndrome related to hypercoagulability of the blood (the blood is "thickened")

Macular Degeneration

Macular degeneration is a medical condition predominantly found in elderly adults in which the center of the inner lining of the eye, known as the macula area of the retina, suffers thinning, atrophy, and in some cases, bleeding. This can result in loss of central vision, which entails inability to see fine details, to read, or to recognize faces. According to the American Academy of Ophthalmology, it is the leading cause of central vision loss (blindness) in the United States today for those over the age of fifty years.[1] Although some macular dystrophies that affect younger individuals are sometimes referred to as macular degeneration, the term generally refers to age-related macular degeneration (AMD or ARMD).

  Subscribe in a reader



Age-related macular degeneration

Age-related macular degeneration begins with characteristic yellow deposits in the macula (central area of the retina which provides detailed central vision, called fovea) called drusen between the retinal pigment epithelium and the underlying choroid. Most people with these early changes (referred to as age-related maculopathy) have good vision. People with drusen can go on to develop advanced AMD. The risk is considerably higher when the drusen are large and numerous and associated with disturbance in the pigmented cell layer under the macula. Recent research suggests that large and soft drusen are related to elevated cholesterol deposits and may respond to cholesterol lowering agents or the Rheo Procedure.

Advanced AMD, which is responsible for profound vision loss, has two forms: dry and wet. Central geographic atrophy, the dry form of advanced AMD, results from atrophy to the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye. While no treatment is available for this condition, vitamin supplements with high doses of antioxidants, lutein and zeaxanthin, have been demonstrated by the National Eye Institute and others to slow the progression of dry macular degeneration and in some patients, improve visual acuity.

Neovascular or exudative AMD, the wet form of advanced AMD, causes vision loss due to abnormal blood vessel growth in the choriocapillaries, through Bruch's membrane, ultimately leading to blood and protein leakage below the macula. Bleeding, leaking, and scarring from these blood vessels eventually cause irreversible damage to the photoreceptors and rapid vision loss if left untreated.


Risk factors
* Aging: Approximately 10% of patients 66 to 74 years of age will have findings of macular degeneration. The prevalence increases to 30% in patients 75 to 85 years of age.
* Family history: The lifetime risk of developing late-stage macular degeneration is 50% for people who have a relative with macular degeneration versus 12% for people who do not have relatives with macular degeneration; a fourfold higher risk.
* Macular degeneration gene: The genes for the complement system proteins factor H (CFH) and factor B (CFB) have been determined to be strongly associated with a person's risk for developing macular degeneration. CFH is involved in inhibiting the inflammatory response mediated via C3b (and the Alternative Pathway of complement) both by acting as a cofactor for cleavage of C3b to its inactive form, C3bi, and by weakening the active complex that forms between C3b and factor B. C-reactive protein and polyanionic surface markers such as glycosaminoglycans normally enhance the ability of factor H to inhibit complement . But the mutation in CFH(Tyr402His) reduces the affinity of CFH for CRP and probably also alters the ability of factor H to recognise specific glycosaminoglycans. This change results in reduced ability of CFH to regulate complement on critical surfaces such as the specialised membrane at the back of the eye and leads to increased inflammatory response within the macula. In two 2006 studies at Yale Department of Epidemiology and Public Health and the Department of Ophthalmology and Visual Sciences, Moran Eye Center at the University of Utah School of Medicine, another gene that has implications for the disease, called HTRA1 (encoding a secreted serine protease), was identified.
The mitochondrial genome (mtDNA) in humans is contained on a single circular chromosome 16,569 basepairs around, and each mitochondrion contains 5 to 10 copies of the mitochondrial chromosome. There are several essential genes in mtDNA that are involved in replication and translation, along with some genes that are crucial for the machinery that converts metabolic energy into ATP. These include NADH dehydrogenase, cytochrome c oxidase, ubiquinol/cytochrome c oxidoreductase, and ATP synthase, as well as the genes for unique Ribosomal RNA and Transfer RNA particles that are required for translating these genes into proteins.

There are specific diseases associated with mutations in some of these genes. Below is one of the affected genes and the disease which arises from its mutation.

Mutation of the ATP synthase gene: Retinitis Pigmentosa (RP) is a genetically linked dysfunction of the retina and is related to mutation of the Adenosine Tri-Phosphate (ATP) Synthase Gene 615.1617

Stargardt’s disease (STGD, also known as Juvenile Macular Degeneration) is an autosomal recessive retinal disorder characterized by a juvenile-onset macular dystrophy, alterations of the peripheral retina, and subretinal deposition of lipofuscin-like material. A gene encoding an ATP-binding cassette (ABC) transporter was mapped to the 2-cM (centiMorgan) interval at 1p13-p21 previously shown by linkage analysis to harbor the STGD gene. This gene, ABCR, is expressed exclusively and at high levels in the retina, in rod but not cone photoreceptors, as detected by in situ hybridization. Mutational analysis of ABCR in STGD families revealed a total of 19 different mutations including homozygous mutations in two families with consanguineous parentage. These data indicate that ABCR is the causal gene of STGD/FFM.

Signs

* Drusen
* Pigmentary alterations
* Exudative changes: hemorrhages in the eye, hard exudates, subretinal/sub-RPE/intraretinal fluid
* Atrophy: incipient and geographic
* Visual acuity drastically decreasing (two levels or more) ex: 20/20 to 20/80.
Symptoms

* Blurred vision: Those with nonexudative macular degeneration may be asymptomatic or notice a gradual loss of central vision, whereas those with exudative macular degeneration often notice a rapid onset of vision loss.
* Central scotomas (shadows or missing areas of vision)
* Distorted vision (i.e. metamorphopsia) - A grid of straight lines appears wavy and parts of the grid may appear blank. Patients often first notice this when looking at mini-blinds in their home.
* Trouble discerning colors; specifically dark ones from dark ones and light ones from light ones.
* Slow recovery of visual function after exposure to bright light

The Amsler Grid Test is one of the simplest and most effective methods for patients to monitor the health of the macula. The Amsler Grid is essentially a pattern of intersecting lines (identical to graph paper) with a black dot in the middle. The central black dot is used for fixation (a place for the eye to stare at). With normal vision, all lines surrounding the black dot will look straight and evenly spaced with no missing or odd looking areas when fixating on the grid's central black dot. When there is disease affecting the macula, as in macular degeneration, the lines can look bent, distorted and/or missing. See a video on how to use an Amsler grid here: [1]

Macular degeneration by itself will not lead to total blindness. For that matter, only a very small number of people with visual impairment are totally blind. In almost all cases, some vision remains. Other complicating conditions may possibly lead to such an acute condition (severe stroke or trauma, untreated glaucoma, etc.), but few macular degeneration patients experience total visual loss.[15] The area of the macula comprises about 5% of the retina and is responsible for about 35% of the visual field. The remaining 65% (the peripheral field) remains unaffected by the disease.

The loss of central vision profoundly affects visual functioning. It is not possible, for example, to read without central vision. Pictures which attempt to depict the central visual loss of macular degeneration with a black spot do not really do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters 6 inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this surprisingly difficult to do.

Similar symptoms with a very different etiology and different treatment can be caused by Epiretinal membrane or macular puckeror leaking blood vessels in the eye.
Prevention

The Age-Related Eye Disease Study showed that a combination of high-dose beta-carotene, vitamin C, vitamin E, and zinc can reduce the risk of developing advanced AMD by about 25 percent in those patients who have earlier but significant forms of the disease. This is the only proven intervention to decrease the risk of advanced AMD at this time. A follow up study, Age-Related Eye Disease Study 2 to study the potential benefits of lutein, zeaxanthine, and fish oil, is currently underway.

Anecortave acetate, (Retanne), is an anti-angiogenic drug that is given as an injection behind the eye (avoiding an injection directly into the eye) that is currently being studied as a potential way of reducing the risk of neovascular (or wet) AMD in high-risk patients. It is not used for the Dry form of AMD.

Studies are underway at Harvard, with the goal of reducing lipofuscin accumulation

Parkinson’s Disease

Parkinson's disease (also known as Parkinson disease or PD) is a degenerative disorder of the central nervous system that often impairs the sufferer's motor skills and speech, as well as other functions.

Parkinson's disease belongs to a group of conditions called movement disorders. It is characterized by muscle rigidity, tremor, a slowing of physical movement (bradykinesia) and, in extreme cases, a loss of physical movement (akinesia). The primary symptoms are the results of decreased stimulation of the motor cortex by the basal ganglia, normally caused by the insufficient formation and action of dopamine, which is produced in the dopaminergic neurons of the brain. Secondary symptoms may include high level cognitive dysfunction and subtle language problems. PD is both chronic and progressive.

  Subscribe in a reader


PD is the most common cause of chronic progressive parkinsonism, a term which refers to the syndrome of tremor, rigidity, bradykinesia and postural instability. PD is also called "primary parkinsonism" or "idiopathic PD" (classically meaning having no known cause although this term is not strictly true in light of the plethora of newly discovered genetic mutations). While many forms of parkinsonism are "idiopathic", "secondary" cases may result from toxicity most notably of drugs, head trauma, or other medical disorders. The disease is named after English physician James Parkinson; who made a detailed description of the disease in his essay: "An Essay on the Shaking Palsy" (1817).

Prostate Cancer

Prostate cancer is a disease in which cancer develops in the prostate, a gland in the male reproductive system. It occurs when cells of the prostate mutate and begin to multiply out of control. These cells may spread (metastasize) from the prostate to other parts of the body, especially the bones and lymph nodes. Prostate cancer may cause pain, difficulty in urinating, erectile dysfunction and other symptoms.

Rates of prostate cancer vary widely across the world. Although the rates vary widely between countries, it is least common in South and East Asia, more common in Europe, and most common in the United States. According to the American Cancer Society, prostate cancer is least common among Asian men and most common among black men, with figures for white men in-between. However, these high rates may be affected by increasing rates of detection.





Prostate cancer develops most frequently in men over fifty. This cancer can occur only in men, as the prostate is exclusively of the male reproductive tract. It is the most common type of cancer in men in the United States, where it is responsible for more male deaths than any other cancer, except lung cancer. In the UK it is also the second most common cause of cancer death after lung cancer. Around 35,000 men in the UK are diagnosed per year; where around 10,000 die of it. However, many men who develop prostate cancer never have symptoms, undergo no therapy, and eventually die of other causes. That is because malignant neoplasms of the prostate are, in most cases, slow-growing, and because most of those affected are over 60. Hence they often die of causes unrelated to the prostate cancer, such as heart/circulatory disease, pneumonia, other unconnected cancers or old age. Many factors, including genetics and diet, have been implicated in the development of prostate cancer. The Prostate Cancer Prevention Trial found that finasteride reduces the incidence of prostate cancer rate by 30%. There had been a controversy about this also increasing the risk of more aggressive cancers, but more recent research showed this was not the case.

Prostate cancer is most often discovered by PSA (prostate specific antigen) screening and less commonly by physical examination or by symptoms. There is some current concern about the accuracy of the PSA test and its usefulness. Suspected prostate cancer is typically confirmed by taking a biopsy of the prostate (biopsy) and examining it under a microscope. Further tests, such as CT scans and bone scans, may be performed to determine whether prostate cancer has spread.

Treatment options for prostate cancer with intent to cure are primarily surgery and radiation therapy. Other treatments such as hormonal therapy, chemotherapy, proton therapy, cryosurgery, high intensity focused ultrasound (HIFU) also exist depending on the clinical scenario and desired outcome. As noted below (hormonal therapy section), Abiraterone Acetate is showing promise in reducing Tumor Size and PSA levels in Aggressive end-stage prostate cancers. The age and underlying health of the man as well as the extent of spread, appearance under the microscope, and response of the cancer to initial treatment are important in determining the outcome of the disease. Since prostate cancer is predominantly a disease of older men, many will die of other causes before a slowly advancing prostate cancer can spread or cause symptoms. This makes treatment selection difficult. The decision whether or not to treat localized prostate cancer (a tumor that is contained within the prostate) with curative intent is a patient trade-off between the expected beneficial and harmful effects in terms of patient survival and quality of life.

CisPlatin

Cisplatin, cisplatinum or cis-diamminedichloridoplatinum(II) (CDDP) is a platinum-based chemotherapy drug used to treat various types of cancers, including sarcomas, some carcinomas (e.g. small cell lung cancer, and ovarian cancer), lymphomas and germ cell tumors. It was the first member of its class, which now also includes carboplatin and oxaliplatin. Platinum complexes are formed in cells, which bind and cause cross-linking of DNA -- ultimately triggering apoptosis, or automated cell death.



Following administration, one of the chloride ligands is slowly displaced by water (an aqua ligand), in a process termed aquation. The aqua ligand in the resulting [PtCl(H2O)(NH3)2]+ is itself easily displaced, allowing cisplatin to coordinate to a basic site in DNA. Subsequently, the platinum cross-links two bases via displacement of the other chloride ligand. Cisplatin crosslinks DNA in several different ways, interfering with cell division by mitosis. The damaged DNA elicits DNA repair mechanisms, which in turn activate apoptosis when repair proves impossible. Recently it was shown that the apoptosis induced by Cisplatin on human colon cancer cells depends on the mitochondrial serine-protease Omi/Htra2. If Omi/Htra2 protein participates in the cisplatin induced apoptosis in other carcinomas remains an open question.
Pharmacology
Most notable among the DNA changes are the 1,2-intrastrand cross-links with purine bases. These include 1,2-intrastrand d(GpG) adducts which form nearly 90% of the adducts and the less common 1,2-intrastrand d(ApG) adducts. 1,3-intrastrand d(GpXpG) adducts occur but are readily excised by the nucleotide excision repair (NER) . Other adducts include inter-strand crosslinks and nonfunctional adducts that have been postulated to contribute to cisplatin's activity. Interaction with cellular proteins, particularly HMG domain proteins, has also been advanced as a mechanism of interfering with mitosis, although this is probably not its primary method of action.
Note that although cisplatin is frequently designated as an alkylating agent, it has no alkyl group and cannot carry out alkylating reactions. It is correctly classified as alkylating-like.
Cisplatin Resistance
Cisplatin combination chemotherapy is the cornerstone of treatment of many cancers. Initial platinum responsiveness is high but the majority of cancer patients will eventually relapse with cisplatin-resistant disease. Many mechanisms of cisplatin resistance have been proposed including changes in cellular uptake and efflux of the drug, increased detoxification of the drug, inhibition of apoptosis and increased DNA repair. Oxaliplatin is active in highly cisplatin-resistant cancer cells in the laboratory, however there is little evidence for its activity in the clinical treatment of patients with cisplatin resistant cancer. The drug Paclitaxel may be useful in the treatment of cisplatin resistant cancer, the mechanism for this activity is unknown.

Psoriasis Animation

Psoriasis (pronounced /səˈraɪəsɪs/) (suh-RI-uh-sus) is a disorder which affects the skin and joints. It commonly causes red scaly patches to appear on the skin. The scaly patches caused by psoriasis, called psoriatic plaques, are areas of inflammation and excessive skin production. Skin rapidly accumulates at these sites and takes on a silvery-white appearance. Plaques frequently occur on the skin of the elbows and knees, but can affect any area including the scalp and genitals.




The disorder is a chronic recurring condition which varies in severity from minor localised patches to complete body coverage. Fingernails and toenails are frequently affected (psoriatic nail dystrophy) - and can be seen as an isolated finding. Psoriasis can also cause inflammation of the joints, which is known as psoriatic arthritis. Ten to fifteen percent of people with psoriasis have psoriatic arthritis.


The cause of psoriasis is not known, but it is believed to have a genetic component. Several factors are thought to aggravate psoriasis. These include stress, excessive alcohol consumption, and smoking. Individuals with psoriasis may suffer from depression and loss of self-esteem. As such, quality of life is an important factor in evaluating the severity of the disease. There are many treatments available but because of its chronic recurrent nature psoriasis is a challenge to treat.


Types of psoriasis
The symptoms of psoriasis can manifest in a variety of forms. Variants include plaque, pustular, guttate and flexural psoriasis. This section describes each type (with ICD-10 code

Plaque psoriasis (psoriasis vulgaris) (L40.0) is the most common form of psoriasis. It affects 80 to 90% of people with psoriasis. Plaque psoriasis typically appears as raised areas of inflamed skin covered with silvery white scaly skin. These areas are called plaques.

Flexural psoriasis (inverse psoriasis) (L40.83-4) appears as smooth inflamed patches of skin. It occurs in skin folds, particularly around the genitals (between the thigh and groin), the armpits, under an overweight stomach (pannus), and under the breasts (inframammary fold). It is aggravated by friction and sweat, and is vulnerable to fungal infections.

Guttate psoriasis (L40.4) is characterized by numerous small round spots (differential diagnosis - pityriasis rosea - oval shape lesion). These numerous spots of psoriasis appear over large areas of the body, such as the trunk, limbs, and scalp. Guttate psoriasis is associated with streptococcal throat infection.

Pustular psoriasis (L40.1-3, L40.82) appears as raised bumps that are filled with non-infectious pus (pustules). The skin under and surrounding pustules is red and tender. Pustular psoriasis can be localised, commonly to the hands and feet (palmoplantar pustulosis), or generalised with widespread patches occurring randomly on any part of the body.

Nail psoriasis (L40.86) produces a variety of changes in the appearance of finger and toe nails. These changes include discolouring under the nail plate, pitting of the nails, lines going across the nails, thickening of the skin under the nail, and the loosening (onycholysis) and crumbling of the nail.

Psoriatic arthritis (L40.5) involves joint and connective tissue inflammation. Psoriatic arthritis can affect any joint but is most common in the joints of the fingers and toes. This can result in a sausage-shaped swelling of the fingers and toes known as dactylitis. Psoriatic arthritis can also affect the hips, knees and spine (spondylitis). About 10-15% of people who have psoriasis also have psoriatic arthritis.

Erythrodermic psoriasis (L40.85) involves the widespread inflammation and exfoliation of the skin over most of the body surface. It may be accompanied by severe itching, swelling and pain. It is often the result of an exacerbation of unstable plaque psoriasis, particularly following the abrupt withdrawal of systemic treatment. This form of psoriasis can be fatal, as the extreme inflammation and exfoliation disrupt the body's ability to regulate temperature and for the skin to perform barrier functions.


Diagnosis
A diagnosis of psoriasis is usually based on the appearance of the skin. There are no special blood tests or diagnostic procedures for psoriasis. Sometimes a skin biopsy, or scraping, may be needed to rule out other disorders and to confirm the diagnosis. Skin from a biopsy will show clubbed Rete pegs if positive for psoriasis. Another sign of psoriasis is that when the plaques are scraped,

Cause

The cause of psoriasis is not fully understood. There are two main hypotheses about the process that occurs in the development of the disease. The first considers psoriasis as primarily a disorder of excessive growth and reproduction of skin cells. The problem is simply seen as a fault of the epidermis and its keratinocytes. The second hypothesis sees the disease as being an immune-mediated disorder in which the excessive reproduction of skin cells is secondary to factors produced by the immune system. T cells (which normally help protect the body against infection) become active, migrate to the dermis and trigger the release of cytokines (tumor necrosis factor-alpha TNFα, in particular) which cause inflammation and the rapid production of skin cells. It is not known what initiates the activation of the T cells.


The immune-mediated model of psoriasis has been supported by the observation that immunosuppressant medications can clear psoriasis plaques. However, the role of the immune system is not fully understood, and it has recently been reported that an animal model of psoriasis can be triggered in mice lacking T cells. Animal models, however, reveal only a few aspects resembling human psoriasis.

Psoriasis is a fairly idiosyncratic disease. The majority of people's experience of psoriasis is one in which it may worsen or improve for no apparent reason. Studies of the factors associated with psoriasis tend to be based on small (usually hospital based) samples of individuals. These studies tend to suffer from representative issues, and an inability to tease out causal associations in the face of other (possibly unknown) intervening factors. Conflicting findings are often reported. Nevertheless, the first outbreak is sometimes reported following stress (physical and mental), skin injury, and streptococcal infection. Conditions that have been reported as accompanying a worsening of the disease include infections, stress, and changes in season and climate. Certain medicines, including lithium salt and beta blockers, have been reported to trigger or aggravate the disease. Excessive alcohol consumption, smoking and obesity may exacerbate psoriasis or make the management of the condition difficult.

Individuals suffering from the advanced effects of the Human immunodeficiency virus, or HIV, often exhibit psoriasis. This presents a paradox to researchers as traditional therapies that reduce T-cell counts generally cause psoriasis to improve. Yet, as CD4-T-cell counts decrease with the progression of HIV, psoriasis worsens. In addition, HIV is typically characterized by a strong Th2 cytokine profile, whereas psoriasis vulgaris is characterized by a strong Th1 secretion pattern.It's hypothesized that the diminished CD4-T-Cell presence causes an over-activation of CD8-T-Cells, which are responsible for the exacerbation of psoriasis in HIV positive patients. It is important to remember that most individuals with psoriasis are otherwise healthy and the presence of HIV accounts for less than 1% of cases. The prevalence of psoriasis in the HIV positive population ranges from 1 to 6 percent, which is about 3 times higher than the normal population.

Treatment
There can be substantial variation between individuals in the effectiveness of specific psoriasis treatments. Because of this, dermatologists often use a trial-and-error approach to finding the most appropriate treatment for their patient. The decision to employ a particular treatment is based on the type of psoriasis, its location, extent and severity. The patient’s age, sex, quality of life, comorbidities, and attitude toward risks associated with the treatment are also taken into consideration.

Medications with the least potential for adverse reactions are preferentially employed. If the treatment goal is not achieved then therapies with greater potential toxicity may be used. Medications with significant toxicity are reserved for severe unresponsive psoriasis. This is called the psoriasis treatment ladder.As a first step, medicated ointments or creams, called topical treatments, are applied to the skin. If topical treatment fails to achieve the desired goal then the next step would be to expose the skin to ultraviolet (UV) radiation. This type of treatment is called phototherapy. The third step involves the use of medications which are taken internally by pill or injection. This approach is called systemic treatment.

Over time, psoriasis can become resistant to a specific therapy. Treatments may be periodically changed to prevent resistance developing (tachyphylaxis) and to reduce the chance of adverse reactions occurring. This is called treatment rotation.

Topical treatment

Bath solutions and moisturizers help soothe affected skin and reduce the dryness which accompanies the build-up of skin on psoriatic plaques. Medicated creams and ointments applied directly to psoriatic plaques can help reduce inflammation, remove built-up scale, reduce skin turn over, and clear affected skin of plaques. Ointment and creams containing coal tar, dithranol (anthralin), corticosteroids like desoximetasone (Topicort), vitamin D3 analogues (for example, calcipotriol), and retinoids are routinely used. Argan oil has also been used with some promising results. The mechanism of action of each is probably different but they all help to normalise skin cell production and reduce inflammation. Activated vitamin D and its analogues are highly effective inhibitors of skin cell proliferation.

The disadvantages of topical agents are variably that they can often irritate normal skin, can be time consuming and awkward to apply, cannot be used for long periods, can stain clothing or have a strong odour. As a result, it is sometimes difficult for people to maintain the regular application of these medications. Abrupt withdrawal of some topical agents, particularly corticosteroids, can cause an aggressive recurrence of the condition. This is known as a rebound of the condition.

Some topical agents are used in conjunction with other therapies, especially phototherapy.

Phototherapy

It has long been recognized that daily, short, non-burning exposure to sunlight helped to clear or improve psoriasis. Niels Finsen was the first physician to investigate the therapeutic effects of sunlight scientifically and to use sunlight in clinical practice. This became known as phototherapy.

Sunlight contains many different wavelengths of light. It was during the early part of the 20th century that it was recognised that for psoriasis the therapeutic property of sunlight was due to the wavelengths classified as ultraviolet (UV) light.

Ultraviolet wavelengths are subdivided into UVA (380–315 nm) UVB (315–280 nm), and UVC (< 280 nm). Ultraviolet B (UVB) (315–280 nm) is absorbed by the epidermis and has a beneficial effect on psoriasis. Narrowband UVB (311 to 312 nm), is that part of the UVB spectrum that is most helpful for psoriasis. Exposure to UVB several times per week, over several weeks can help people attain a remission from psoriasis.





Ultraviolet light treatment is frequently combined with topical (coal tar, calcipotriol) or systemic treatment (retinoids) as there is a synergy in their combination. The Ingram regime, involves UVB and the application of anthralin paste. The Goeckerman regime combines coal tar ointment with UVB.

Photochemotherapy

Psoralen and ultraviolet A phototherapy (PUVA) combines the oral or topical administration of psoralen with exposure to ultraviolet A (UVA) light. Precisely how PUVA works is not known. The mechanism of action probably involves activation of psoralen by UVA light which inhibits the abnormally rapid production of the cells in psoriatic skin. There are multiple mechanisms of action associated with PUVA, including effects on the skin immune system.

PUVA is associated with nausea, headache, fatigue, burning, and itching. Long-term treatment is associated with squamous-cell and melanoma skin cancers.

Systemic treatment

Psoriasis which is resistant to topical treatment and phototherapy is treated by medications that are taken internally by pill or injection. This is called systemic treatment. Patients undergoing systemic treatment are required to have regular blood and liver function tests because of the toxicity of the medication. Pregnancy must be avoided for the majority of these treatments. Most people experience a recurrence of psoriasis after systemic treatment is discontinued.

The three main traditional systemic treatments are methotrexate, cyclosporine and retinoids. Methotrexate and cyclosporine are immunosupressant drugs; retinoids are synthetic forms of vitamin A. Other additional drugs, not specifically licensed for psoriasis, have been found to be effective. These include the antimetabolite tioguanine, the cytotoxic agent hydroxyurea, sulfasalazine, the immunosupressants mycophenolate mofetil, azathioprine and oral tacrolimus. These have all been used effectively to treat psoriasis when other treatments have failed. Although not licensed in many other countries fumaric acid esters have also been used to treat severe psoriasis in Germany for over 20 years.

Biologics are manufactured proteins that interrupt the immune process involved in psoriasis. Unlike generalised immunosuppressant therapies such as methotrexate, biologics focus on specific aspects of the immune function leading to psoriasis. These drugs (interleukin antagonists) are relatively new, and their long-term impact on immune function is unknown. They are very expensive and only suitable for very few patients with psoriasis. Ustekinumab (IL-12 and IL-23 blocker) shows hopeful results for psoriasis therapy.

Alternative therapy

Antibiotics are not indicated in routine treatment of psoriasis. However, antibiotics may be employed when an infection, such as that caused by the bacteria Streptococcus, triggers an outbreak of psoriasis, as in certain cases of guttate psoriasis.

Climatotherapy involves the notion that some diseases can be successfully treated by living in a particular climate. Several psoriasis clinics are located throughout the world based on this idea. The Dead Sea is one of the most popular locations for this type of treatment.

In Turkey & in Croatia (Altermedica), doctor fish which live in the outdoor pools of spas, are encouraged to feed on the psoriatic skin of people with psoriasis. The fish only consume the affected areas of the skin. The outdoor location of the spa may also have a beneficial effect. This treatment can provide temporary relief of symptoms. A revisit to the spas every few months is often required. Treatment in this hot spring has been examined until now in two small clinical trials, with positive results.

Some people subscribe to the view that psoriasis can be effectively managed through a healthy lifestyle. This view is based on anecdotal evidence, and has not been subjected to formal scientific evaluation. Nevertheless, some people report that minimizing stress and consuming a healthy diet, combined with rest, sunshine and swimming in saltwater keep lesions to a minimum. This type of "lifestyle" treatment is suggested as a long-term management strategy, rather than an initial treatment of severe psoriasis. The effectiveness of the Dead Sea in treating psoriasis has been the topic of some research and studies from all over the world. One particular study is the use of Dead Sea salts to psoriasis patients in partial or full baths. In a controlled manner, these patients have undergone the treatment with the waters having a specific temperature and lasted for 20 minutes. This lasted for about 3-4 weeks, with the patients having 3-4 baths per week. Several noticeable symptoms were reduced.

A number of patients have reported significant improvements from sun and sea water: unfortunately, salt alone does not have any effect. Sea water contains so many minerals and different life forms (thousands of species of bacteria alone) that it will be hard to determine which of these is causing the observed effects. Interestingly, people in the tropics differentiate between "live" and "dead" sea water: "live" sea water is water that has never been covered.

Some psoriasis patients use herbology as a holistic approach that aims to treat the underlying causes of psoriasis. Some alternative therapies consider Oil of Oregano to be a powerful herbal method of treatment.

A psychological symptom management programme has been reported as being a helpful adjunct to traditional therapies in the management of psoriasis.

Zinc oxide (ZnO) is used for several skin afflictions and according to some patients also provides relief.

At least one source states that Milk thistle may prevent psoriasis outbreaks by encouraging proper liver function; the claimed mechanism is neutralization of "certain toxins associated with psoriasis attacks" but neither the identity of these toxins, the nature of the association nor the mechanism of neutralization is cited.


Historical treatment
The history of psoriasis is littered with treatments of dubious effectiveness and high toxicity. These treatments received brief popularity at particular time periods or within certain geographical regions. The application of cat faeces to red lesions on the skin, for example, was one of the earliest topical treatments employed in ancient Egypt. Onions, sea salt and urine, goose oil and semen, wasp droppings in sycamore milk, and soup made from vipers have all been reported as being ancient treatments.

In the more recent past Fowler's solution, which contains a poisonous and carcinogenic arsenic compound, was used by dermatologists as a treatment for psoriasis during the 18th and 19th centuries. Grenz rays (also called ultrasoft X-rays or Bucky rays) was a popular treatment of psoriasis during the middle of the 20th century. This type of therapy was superseded by ultraviolet therapy.

Undecylenic acid was investigated and used for psoriasis some 40 years ago.(cir. 1950~)

All these treatments have fallen out of favour.

Sulphur was fashionable as a treatment for psoriasis in the Victorian and Edwardian eras. It has recently re-gained some credibility as a safe alternative to steroids and coal tar.

Future drug development
Historically, agents used to treat psoriasis were discovered by experimentation or by accident. In contrast, current novel therapeutic agents are designed from a better understanding of the immune processes involved in psoriasis and by the specific targeting of molecular mediators. Examples can be seen in the use of biologics which target T cells and TNF inhibitors.

It has been suggested that cannabis might treat psoriasis, due to the anti-inflammatory properties of its cannabinoids, and the regulatory effects of THC on the immune system. The adverse effects of cannabis might be overcome by use of more specific cannabinoid receptor medications, to inhibit keratinocyte proliferation.

Future innovation should see the creation of additional drugs that refine the targeting of immune-mediators further.

Research into antisense oligonucleotides carries the potential to provide novel therapeutic strategies for treating psoriasis.

ABT-874 is a human anti-IL-12 monoclonal antibody being developed by Abbott Laboratories in conjunction with Cambridge Antibody Technology for the treatment of multiple autoimmune diseases including psoriasis. Phase II trials have been completed and showed promising results. Abbott was planning to initiate Phase III trials in 2007.

In 2004, Tas and Avci demonstrated cyclopamine’s clinical potential for the treatment of psoriasis and basal cell carcinoma in two preliminary proof of concept studies. By treating 31 psoriatic lesions in 7 patients, these authors asserted that topical cyclopamine was more effective in the clinical and histological clearance of guttate and plaque psoriasis than the topical steroid clobetasol-17 propionate.Furthermore, they demonstrated that concurrent application of cylopamine and clobetasol-17 propionate accelerated regression and clearance of selected lesions greater than cyclopamine alone with clearance times as early as 48 hours.They assert that cyclopamine inhibits the abnormal proliferation of epithelial cells, induces terminal differentiation, and is associated with the decreased presence of inflammatory cells, including CD41 lymphocytes.

On August 27, 2006, scientists led by Jeung-Hoon Lee created in the laboratory synthetic lipids called pseudoceramides which are involved in skin cell growth and could be used in treating skin diseases such as atopic dermatitis, a form of eczema characterized by red, flaky and very itchy skin; psoriasis, and glucocorticoid-induced epidermal atrophy, in which the skin shrinks due to skin cell loss.