Long-Term Potentiation LTP

Long-term potentiation (LTP) is a long-lasting enhancement in signal transmission between two neurons that results from stimulating them synchronously. It is one of several phenomena underlying synaptic plasticity, the ability of chemical synapses to change their strength. As memories are thought to be encoded by modification of synaptic strength,LTP is widely considered one of the major cellular mechanisms that underlies learning and memory.

video


LTP shares many features with long-term memory, making it an attractive candidate for a cellular mechanism of learning. For example, LTP and long-term memory are triggered rapidly, each depends upon the synthesis of new proteins, each has properties of associativity, and each can last for many months. LTP may account for many types of learning, from the relatively simple classical conditioning present in all animals, to the more complex, higher-level cognition observed in humans.

At a cellular level, LTP enhances synaptic transmission. It improves the ability of two neurons, one presynaptic and the other postsynaptic, to communicate with one another across a synapse. The precise molecular mechanisms for this enhancement of transmission have not been fully established, in part because LTP is governed by multiple mechanisms that vary by species and brain region. In the most well understood form of LTP, enhanced communication is predominantly carried out by improving the postsynaptic cell's sensitivity to signals received from the presynaptic cell. These signals, in the form of neurotransmitter molecules, are received by neurotransmitter receptors present on the surface of the postsynaptic cell. LTP improves the postsynaptic cell's sensitivity to neurotransmitter in large part by increasing the activity of existing receptors and by increasing the number of receptors on the postsynaptic cell surface.

LTP was discovered in the rabbit hippocampus by Terje Lømo in 1966 and has remained a popular subject of research since. Many modern LTP studies seek to better understand its basic biology, while others aim to draw a causal link between LTP and behavioral learning. Still others try to develop methods, pharmacologic or otherwise, of enhancing LTP to improve learning and memory. LTP is also a subject of clinical research, for example, in the areas of Alzheimer's disease and addiction medicine.

Molecular Collapse of Evolution

video

NEWWET LIMB REGENRATION

video

Oxygen Transport

video

ParM and Plasmid Segregation

DNA segregation by ParM - ParM binds to DNA-binding proteins, called ParR (orange proteins) around which segments of genomic DNA are coiled. Sister plasmid segregation is achieved through bidirectional insertional polymerization of the ParM filaments.
video

Passenger Proteins

video

Phagocytosis Video

video

Precipitor - Affinity Magnetic High Throughput Immunopreciptor

Abnova's Precipitor™ system is automated magnetic bead platform for high throughput precipitation and purification of proteins. Combining 96 deep well plate with affinity conjugated magnetic beads, Precipitor™ easily handles 16 different assays simultaneously by transferring beads from one well to the next for mixing, binding, washing, and elution reactions via the robotic action of parallel magnetic rods. It simplifies the routine yet labor intensive process, and addresses the needs of rigorous proteomic screening and biomarker discovery applications such as immunoprecipitaton (IP, ChIP, RIP), recombinant protein purification, and protein-protein interaction. Precipitor™ delivers reproducible and consistent results by obviating the drawbacks of manual operation. Its integrated onscreen display allows easy change of parameters tailored to your experiment. Moreover, you can select from large scope of available antibodies reagents to accelerate your research!
video

Photon - 96 well Chemiluminescence Reader

video

Pronucleus microinjection Video

 video

Radiation of DNA and Response of Different Cells to Radiation.

video

Rap5 protein and endosome fusion under microscope

video

Replication of HCV

video

RNAi Transfection Video

video

Role of Tubulins on Forming ER network

video

Signal Recognition Particle Video

video

Size Analogies of Bacteria and Viruses

video

Specific (Adaptive) Immunity Humoral and Cell Mediated

video

Spirogyra Cell Colonies Video

video

Spire mechanism Video

video

Stem Cells Heart cells Grown from Mouse Stem Cells Video

video

Stereoclia and Hair cells

Stereocilia are apical modifications of the cell, which are distinct from cilia and microvilli, but closely related to the latter.Though their name is more similar to cilia, they are actually more closely related to microvilli, and some sources consider them to be a variant of microvilli rather than their own distinct type of structure. It is a long projection of cell membrane, similar in structure to microvillus video


Mammalian Molecular Clock Model

 Molecular Clock is a technique in molecular evolution that uses fossil constraints and rates of molecular change to deduce the time in geologic history when two species or other taxa diverged. It is used to estimate the time of occurrence of events called speciation or radiation. The molecular data used for such calculations is usually nucleotide sequences for DNA or amino acid sequences for proteins. It is sometimes called a gene clock or evolutionary clock.

Part 1
video


Part 2
video
Part 3
video
Part 4
video

Angiogenic Switch and VEGF

video

Tuberculosis Video

video

Tumor Vasculature Video

video

Visualization of the Nuclear Import and Nuclear Export

video

AZT Mechanism of Antiviral Activity Video

video

Asymmetric division Video

video

Apoptosis Video

video

Adhesion junctions at epithelial cells

video

Acetyl CoA enzyme

video

Triskelion ( clathrin)


The triskelion shape of the clathrin molecule enables it to form the polyhedral protein network that covers clathrin-coated pits and vesicles. Domains within the clathrin heavy chain that are responsible for maintaining triskelion shape and function were identified and localized. Sequences that mediate trimerization are distal to the carboxyl terminus and are adjacent to a domain that mediates both light chain binding and clathrin assembly. Structural modeling predicts that within this domain, the region of heavy chain-light chain interaction is a bundle of three or four alpha helices.
video

Sandwich ELISA Isotype detection

Sandwich ELISA is performed to measure the amount and serological class of antibodies made by an immunized animal or present in the serum of patients. Anti-immunoglobulin antibodies is used as the specific and sensitive agents of detection.
video

Zirconocene beta-Hydride Transfer with HOMO Isosurface Video

video

HIV-Mode of action of NNRTIs


NNRTIs are a class of anti-HIV drugs. When one NNRTI is used in combination with other anti-HIV drugs – usually a total of 3 drugs – then this combination therapy can block the replication of HIV in a person's blood.

NNRTIs, sometimes referred to as "Non-Nucleoside Analogues" – or "non-nukes" for short – prevent healthy T-cells in the body from becoming infected with HIV.

video


When HIV infects a cell in a person's body, it copies it's own genetic code into the cell's DNA. In this way, the cell is then "programmed" to create new copies of HIV. HIV's genetic material is in the form of RNA. In order for it to infect T-cells, it must first convert its RNA into DNA. HIV's reverse transcriptase enzyme is needed to perform this process.

NNRTIs attach themselves to reverse transcriptase and prevent the enzyme from converting RNA to DNA. In turn, HIV's genetic material cannot be incorporated into the healthy genetic material of the cell, and prevents the cell from producing new virus.

DNA Gel Preparation

Morphine

Morphine (INN) (pronounced /ˈmɔrfiːn/) (MS Contin, MSIR, Avinza, Kadian, Oramorph, Roxanol, Kapanol) is a potent opiate analgesic medication and is considered to be the prototypical opioid. It was discovered in 1804 by Sertürner, first distributed by same in 1817, and first commercially sold by Merck in 1827, which at the time was a single small chemists' shop. It was more widely used after the invention of the hypodermic needle in 1857.

video




Morphine is the most abundant alkaloid found in opium, the dried sap (latex) derived from shallowly slicing the unripe seedpods of the opium, or common or edible, poppy, Papaver somniferum. Morphine was the first active principle purified from a plant source and is one of at least 50 alkaloids of several different types present in opium, Poppy Straw Concentrate, and other poppy derivatives. Morphine is generally 8 to 17 per cent of the dry weight of opium, although specially-bred cultivars reach 26 per cent or produce little morphine at all, under 1 per cent, perhaps down to 0.04 per cent. The latter varieties, including the 'Przemko' and 'Norman' cultivars of the opium poppy, are used to produce two other alkaloids, thebaine and oripavine, which are used in the manufacture of semi-synthetic and synthetic opioids like oxycodone and etorphine and some other types of drugs. Morphine can be found in low to intermediate concentrations in the Iranian poppy (P. bracteatum), although this poppy is most often used for codeine and thebaine production. Higher, industrially useful concentrations of morphine are found in the oriental poppy (P. orientale). Lower concentrations may be found in a handful of other species in the poppy family, as well as in some species of hops and mulberry trees. Morphine is produced most predominantly early in the life cycle of the plant. Past the optimum point for extraction, various processes in the plant produce codeine, thebaine, and in some cases low quantities of hydromorphone, dihydromorphine, dihydrocodeine, tetrahydrothebaine, and hydrocodone. The human body also produces small amounts of morphine and metabolises it into a number of other active opiates.

In clinical medicine, morphine is regarded as the gold standard, or benchmark, of analgesics used to relieve severe or agonizing pain and suffering. Like other opioids, e.g. oxycodone (OxyContin, Percocet, Percodan), hydromorphone (Dilaudid, Palladone), and diacetylmorphine (heroin), morphine acts directly on the central nervous system (CNS) to relieve pain. Morphine has a high potential for addiction; tolerance and psychological dependence develop rapidly, although physical addiction may take several months to develop.

Stem Cells: Programming and Personalized Medicine

Rudolf Jaenisch is one of the founders of transgenic science (gene transfer to create mouse models of human disease). His lab has produced mouse models leading to new understanding of cancers and various neurological diseases.

He received his doctorate in medicine from the University of Munich in 1967. He came to the Whitehead from the University of Hamburg in Germany, where he was head of the Department of Tumor Virology at the Heinrich Pette Institute.




Jaenisch received the 2002 Robert Koch Prize for Excellence in Scientific Achievement. In 2003, he was awarded the Charles Rodolphe Brupbacher Prize for basic research in oncology and was elected a member of the National Academy of Sciences.

Jaenisch is a fellow of the American Academy of Arts and Sciences and the American Academy of Microbiology, and a member of the American Association for the Advancement of Science

Competent Cell Preparation



Antibody Array for Protein Expression Profiling

Ionic Regulation Across Cell Membranes

How Anti-depressants Work

Messages pass from neuron to neuron using chemical messengers called neurotransmitters. The messages can pass on information about emotions, behavior, body temperature, appetite, or many other functions. The type of information sent depends on which neurons are activated and what part of the brain is stimulated.

A message passes from a sending neuron to a receiving neuron. The neurotransmitters leave the sending neuron and enter the space between the sending and receiving neurons. This space is called the synapse. The neurotransmitters then hook up to a receptor on the receiving neuron to deliver their message.

Once neurotransmitters have sent their message, they return and can be reabsorbed by the sending neuron in a process called reuptake. Reuptake allows the messengers to be reused. Two of these neurotransmitters are serotonin and norepinephrine. Low levels of serotonin and norepinephrine in the synapse are associated with depression and sadness. Some medications used to treat depression work by increasing the amount of certain neurotransmitters that are available to carry messages.



Each type of antidepressant works on brain chemistry a little differently. All antidepressant medications influence how certain neurotransmitters, especially serotonin and norepinephrine, work in the brain.

SSRIs and tricyclic antidepressants. Antidepressants, such as selective serotonin reuptake inhibitors, or SSRIs, and tricyclic antidepressants, work by slowing or blocking the sending neuron from taking back the released serotonin. In that way, more of this chemical is available in the synapse. The more of this neurotransmitter that is available, the more likely the message is received, and depression is reduced. To learn more about how these antidepressants work, see Tricyclic Antidepressants (TCAs) and Selective Serotonin Reuptake Inhibitors (SSRIs).

Intersubjectivity and Mirror Neurons

Intersubjectivity and Mirror Neurons