Granulocyte Colony-Stimulating Factor (G-CSF or GCSF) is a colony-stimulating factor hormone. It is a glycoprotein, growth factor or cytokine produced by a number of different tissues to stimulate the bone marrow to produce granulocytes and stem cells. G-CSF then stimulates the bone marrow to pulse them out of the marrow into the blood. It also stimulates the survival, proliferation, differentiation, and function of neutrophil precursors and mature neutrophils.
G-CSF is also known as Colony-Stimulating Factor 3 (CSF 3).
Subscribe in a reader
Biological function
G-CSF is produced by endothelium, macrophages, and a number of other immune cells. The natural human glycoprotein exists in two forms, a 174- and 180-amino-acid-long protein of molecular weight 19,600 grams per mole. The more-abundant and more-active 174-amino acid form has been used in the development of pharmaceutical products by recombinant DNA (rDNA) technology.
Mouse granulocyte colony-stimulating factor (G-CSF) was first recognised and purified in Australia in 1983, and the human form was cloned by groups from Japan and the United States in 1986.
The G-CSF-receptor is present on precursor cells in the bone marrow, and, in response to stimulation by G-CSF, initiates proliferation and differentiation into mature granulocytes.
Genetics
The gene for G-CSF is located on chromosome 17, locus q11.2-q12. Nagata et al. found that the GCSF gene has 4 introns, and that 2 different polypeptides are synthesized from the same gene by differential splicing of mRNA.
The 2 polypeptides differ by the presence or absence of 3 amino acids. Expression studies indicate that both have authentic GCSF activity.
It is thought that stability of the G-CSF mRNA is regulated by an RNA element called the G-CSF factor stem-loop destabilising element.
Therapeutic use
G-CSF stimulates the production of white blood cells (WBC). In oncology and hematology, a recombinant form of G-CSF is used with certain cancer patients to accelerate recovery from neutropenia after chemotherapy, allowing higher-intensity treatment regimens. Chemotherapy can cause myelosuppression and unacceptably low levels of white blood cells, making patients prone to infections and sepsis. However, in a Washington University School of Medicine study using mice, G-CSF is shown to lessen the density of bone tissue even while it increases the WBC count; if this is found to occur in human cases it would necessitate increased consumption of calcium and vitamins A and D, and maybe drug therapy.
G-CSF is also used to increase the number of hematopoietic stem cells in the blood of the donor before collection by leukapheresis for use in hematopoietic stem cell transplantation. It may also be given to the receiver, to compensate for conditioning regimens.
Itescu planned in 2004 to use G-CSF to treat heart degeneration by injecting it into the blood-stream, plus SDF (stromal cell-derived factor) directly to the heart.
The recombinant human G-CSF synthesised in an E. coli expression system is called filgrastim. The structure of filgrastim differs slightly from the structure of the natural glycoprotein. Most published studies have used filgrastim. Filgrastim (Neupogen®) and PEG-filgrastim (Neulasta®) are two commercially-available forms of rhG-CSF (recombinant human G-CSF). The PEG (polyethylene glycol) form has a much longer half-life, reducing the necessity of daily injections.
Another form of recombinant human G-CSF called lenograstim is synthesised in Chinese Hamster Ovary cells (CHO cells). As this is a mammalian cell expression system, lenograstim is indistinguishable from the 174-amino acid natural human G-CSF. No clinical or therapeutic consequences of the differences between filgrastim and lenograstim have yet been identified, but there are no formal comparative studies.
No comments:
Write comments