Pages

DNA Polymerase

DNA polymerase is an enzyme that catalyzes the polymerization of deoxyribonucleotides into a DNA strand. DNA polymerases are best-known for their role in DNA replication, in which the polymerase "reads" an intact DNA strand as a template and uses it to synthesize the new strand. The newly-polymerized molecule is complementary to the template strand and identical to the template's original partner strand. DNA polymerases use a magnesium ion for catalytic activity.



Function
DNA polymerase can add free nucleotides to only the 3’ end of the newly-forming strand. This results in elongation of the new strand in a 5'-3' direction. No known DNA polymerase is able to begin a new chain (de novo). DNA polymerase can add a nucleotide onto only a preexisting 3'-OH group, and, therefore, needs a primer at which it can add the first nucleotide. Primers consist of RNA and DNA bases with the first two bases always being RNA, and are synthesized by another enzyme called primase. An enzyme known as a helicase is required to unwind DNA from a double-strand structure to a single-strand structure to facilitate replication of each strand consistent with the semiconservative model of DNA replication.

Error correction is a property of some, but not all, DNA polymerases. This process corrects mistakes in newly-synthesized DNA. When an incorrect base pair is recognized, DNA polymerase reverses its direction by one base pair of DNA. The 3'->5' exonuclease activity of the enzyme allows the incorrect base pair to be excised (this activity is known as proofreading). Following base excision, the polymerase can re-insert the correct base and replication can continue.
Ref:

DNA polymerase. (2009, October 19). In Wikipedia, The Free Encyclopedia. Retrieved 03:55, October 31, 2009, from http://en.wikipedia.org/w/index.php?title=DNA_polymerase&oldid=320725948

PDB File

Protein Modification (Golgi)

Elongation Factor EF-TU

EF-Tu (elongation factor thermo unstable) mediates the entry of the aminoacyl tRNA into a free site of the ribosome. EF-Tu functions by binding an aminoacylated, or charged, tRNA molecule in the cytoplasm. This complex transiently enters the ribosome, with the tRNA anticodon domain associating with the mRNA codon in the ribosomal A site. If the codon-anticodon pairing is correct, EF-Tu hydrolyzes GTP into GDP and inorganic phosphate, and changes in conformation to dissociate from the tRNA molecule. The aminoacyl tRNA then fully enters the A site, where its amino acid is brought near the P-site polypeptide and the ribosome catalyzes the covalent transfer of the polypeptide onto the amino acid.


EF-Tu contributes to translational accuracy in three ways. It delays GTP hydrolysis if the tRNA in the ribosome’s A site does not match the mRNA codon, thus preferentially increasing the likelihood for the incorrect tRNA to leave the ribosome. It also adds a second delay (regardless of tRNA matching) after freeing itself from tRNA, before the aminoacyl tRNA fully enters the A site. This delay period is a second opportunity for incorrectly-paired tRNA (and their bound amino acids) to move out of the A site before the incorrect amino acid is irreversibly added to the polypeptide chain. A third mechanism is the less well understood function of EF-Tu to crudely check amino acid-tRNA associations, and reject complexes where the amino acid is not bound to the correct tRNA coding for it.

Exploring the Mitochondria

A mitochondrion contains outer and inner membranes composed of phospholipid bilayers and proteins. The two membranes, however, have different properties. Because of this double-membraned organization, there are five distinct compartments within the mitochondrion. There is the outer mitochondrial membrane, the intermembrane space (the space between the outer and inner membranes), the inner mitochondrial membrane, the cristae space (formed by infoldings of the inner membrane), and the matrix (space within the inner membrane).




Outer membrane


The outer mitochondrial membrane, which encloses the entire organelle, has a protein-to-phospholipid ratio similar to that of the eukaryotic plasma membrane (about 1:1 by weight). It contains large numbers of integral proteins called porins. These porins form channels that allow molecules 5000 Daltons or less in molecular weight to freely diffuse from one side of the membrane to the other. Larger proteins can enter the mitochondrion if a signaling sequence at their N-terminus binds to a large multisubunit protein called translocase of the outer membrane, which then actively moves them across the membrane. Disruption of the outer membrane permits proteins in the intermembrane space to leak into the cytosol, leading to certain cell death. The mitochondrial outer membrane can associate with the ER membrane, in a structure called MAM (mitochondria-associated ER-membrane). This is important in ER-mitochondria calcium signaling and involved in the transfer of lipids between the ER and mitochondria.

Intermembrane space

The intermembrane space is basically the space between the outer membrane and the inner membrane. Because the outer membrane is freely permeable to small molecules, the concentrations of small molecules such as ions and sugars in the intermembrane space is the same as the cytosol. However, as large proteins must have a specific signaling sequence to be transported across the outer membrane, the protein composition of this space is different than the protein composition of the cytosol. One protein that is localized to the intermembrane space in this way is cytochrome c.


Inner membrane

The inner mitochondrial membrane contains proteins with five types of functions:

1. Those that perform the redox reactions of oxidative phosphorylation
2. ATP synthase, which generates ATP in the matrix
3. Specific transport proteins that regulate metabolite passage into and out of the matrix
4. Protein import machinery.
5. Mitochondria fusion and fission protein

It contains more than 100 different polypeptides, and has a very high protein-to-phospholipid ratio (more than 3:1 by weight, which is about 1 protein for 15 phospholipids). The inner membrane is home to around 1/5 of the total protein in a mitochondrion. In addition, the inner membrane is rich in an unusual phospholipid, cardiolipin. This phospholipid was originally discovered in beef hearts in 1942, and is usually characteristic of mitochondrial and bacterial plasma membranes. Cardiolipin contains four fatty acids rather than two and may help to make the inner membrane impermeable. Unlike the outer membrane, the inner membrane does not contain porins and is highly impermeable to all molecules. Almost all ions and molecules require special membrane transporters to enter or exit the matrix. Proteins are ferried into the matrix via the translocase of the inner membrane (TIM) complex or via Oxa1. In addition, there is a membrane potential across the inner membrane formed by the action of the enzymes of the electron transport chain.

Cristae
The inner mitochondrial membrane is compartmentalized into numerous cristae, which expand the surface area of the inner mitochondrial membrane, enhancing its ability to produce ATP. These are not simple random folds but rather invaginations of the inner membrane, which can affect overall chemiosmotic function. In typical liver mitochondria, for example, the surface area, including cristae, is about five times that of the outer membrane. Mitochondria of cells that have greater demand for ATP, such as muscle cells, contain more cristae than typical liver mitochondria.These folds are studded with small round bodies known as F1 particles or oxysomes.

Matrix
The matrix is the space enclosed by the inner membrane. It contains about 2/3 of the total protein in a mitochondrion. The matrix is important in the production of ATP with the aid of the ATP synthase contained in the inner membrane. The matrix contains a highly-concentrated mixture of hundreds of enzymes, special mitochondrial ribosomes, tRNA, and several copies of the mitochondrial DNA genome. Of the enzymes, the major functions include oxidation of pyruvate and fatty acids, and the citric acid cycle.

Mitochondria have their own genetic material, and the machinery to manufacture their own RNAs and proteins (see: protein biosynthesis). A published human mitochondrial DNA sequence revealed 16,569 base pairs encoding 37 total genes: 22 tRNA, 2 rRNA, and 13 peptide genes. The 13 mitochondrial peptides in humans are integrated into the inner mitochondrial membrane, along with proteins encoded by genes that reside in the host cell's nucleus.