Pages

Showing posts with label CDNA. Show all posts
Showing posts with label CDNA. Show all posts

Recombinant DNA Technology

Recombinant DNA is a form of artificial DNA which is engineered through the combination or insertion of one or more DNA strands, thereby combining DNA sequences which would not normally occur together. In terms of genetic modification, recombinant DNA is produced through the addition of relevant DNA into an existing organismal genome, such as the plasmid of bacteria, to code for or alter different traits for a specific purpose, such as immunity. It differs from genetic recombination, in that it does not occur through processes within the cell or ribosome, but is exclusively engineered.



The Recombinant DNA technique was engineered by Stanley Norman Cohen and Herbert Boyer in 1973. They published their findings in a 1974 paper entitled "Construction of Biologically Functional Bacterial Plasmids in vitro", which described a technique to isolate and amplify genes or DNA segments and insert them into another cell with precision, creating a transgenic bacterium. Recombinant DNA technology was made possible by the discovery of restriction endonucleases by Werner Arber, Daniel Nathans, and Hamilton Smith, for which they received the 1978 Nobel Prize in Medicine.



Introduction

Because of the importance in DNA in the replication of new structures and characteristics of living organisms, it has widespread importance in recapitulating via viral or non-viral vectors, both desirable and undesirable characteristics of a species to achieve characteristic change or to counteract effects caused by genetic or imposed disorders that have effects upon cellular or organismal processes. Through the use of recombinant DNA, genes that are identified as important can be amplified and isolated for use in other species or applications, where there may be some form of genetic illness or discrepancy, and provides a different approach to complex biological problem solving.

Applications and methods
Cloning and relation to plasmids



The use of cloning is interrelated with Recombinant DNA in classical biology, as the term "clone" refers to a cell or organism derived from a parental organism, with modern biology referring to the term as a collection of cells derived from the same cell which remain identical. In the classical instance, the use of recombinant DNA provides the initial cell from which the host organism is then expected to recapitulate when it undergoes further cell division, with bacteria remaining a prime example due to the use of viral vectors in medicine which contain recombinant DNA inserted into a structure known as a plasmid.



Plasmids are extrachromosomal self replicating circular forms of DNA present in most bacteria, such as Escherichia coli (E. Coli), contain genes related to catabolism and metabolic activity, and allow the carrier bacterium to survive and reproduce in conditions present within other species and environments. These genes represent characteristics of resistance to bacteriophages and antibiotics and some heavy metals, but can also be fairly easily removed or separated from the plasmid by restriction endonucleases, which regularly produce "sticky ends" and allow the attachment of a selected segment of DNA, which codes for more "reparative" substances, such as peptide hormone medications including insulin, growth hormone, and oxytocin. In the introduction of useful genes into the plasmid, the bacteria is then used as a viral vector, which is encouraged to reproduce so as to recapitulate the altered DNA within other cells it infects and increase the amount of cells with the recombinant DNA present within them.



The use of plasmids is also key within gene therapy, where their related viruses are used as cloning vectors or carriers, which are means of transporting and passing on genes in recombinant DNA through viral reproduction throughout an organism. As a general definition of plasmids, the definition is that they contain three common features -- a replicator, selectable marker and a cloning site.The replicator or "ori" refers to the origin of replication with regards to location and bacteria where replication begins. The marker refers to a gene which usually contains resistance to an antibiotic, but may also refer to a gene which is attached alongside the desired one, such as that which confers luminescence to allow identification of successfully recombined DNA. The cloning site is a sequence of nucleotides representing one or more positions where cleavage by restriction endonucleases occurs. Most eukaryotes do not maintain canonical plasmids; yeast is a notable exception. In addition, the Ti plasmid of the bacterium Agrobacterium tumefaciens can be used to integrate foreign DNA into the genomes of many plants. Other methods of introducing or creating recombinant DNA in eukaryotes include homologous recombination and transfection with modified viruses.

Chimeric plasmids



When recombinant DNA is then further altered or changed to host additional strands of DNA, the molecule formed is referred to as "chimeric" DNA molecule, with reference to the mythological chimera which consisted as a composite of several animals. The presence of chimeric plasmid molecules is somewhat regular in occurrence as throughout the lifetime of an organism the propagation by vectors ensures the presence of hundreds of thousands of organismal and bacterial cells which all contain copies of the original chimeric DNA.



In the production of chimeric plasmids, the processes involved can be somewhat uncertainas the intended outcome of the addition of foreign DNA may not always be achieved and may result in the formation of unusable plasmids. Initially, the plasmid structure is linearised to allow the addition by bonding of complimentary foreign DNA strands to single-stranded "overhangs" or "sticky ends" present at the ends of the DNA molecule from staggered, or "S shaped" cleavages produced by restriction endonucleases.



A common vector used for the donation of plasmids originally was the bacterium Escherichia coli and later, the EcoRI derivative which was used for it's versatility with addition of new DNA by "relaxed" replication when inhibited by chloramphenicol and spectinomycin; later being replaced by the pBR322 plasmid.In the case of EcoRI, the plasmid can anneal with the presence of foreign DNA via the route of sticky-end ligation, or with "blunt ends" via blunt-end ligation, in the presence of the phage T4 ligase , which forms covalent links between 3-carbon OH and 5-carbon PO4 groups present on blunt ends. Both sticky-end, or overhang ligation and blunt-end ligation can occur between foreign DNA segments, and cleaved ends of the original plasmid depending upon the restriction endonuclease used for cleavage

DNA Microarray Animation

A DNA microarray (also commonly known as gene or genome chip, DNA chip, or gene array) is a collection of microscopic DNA spots, commonly representing single genes, arrayed on a solid surface by covalent attachment to chemically suitable matrices. DNA arrays are different from other types of microarray only in that they either measure DNA or use DNA as part of its detection system. Qualitative or quantitative measurements with DNA microarrays utilize the selective nature of DNA-DNA or DNA-RNA hybridization under high-stringency conditions and fluorophore-based detection. DNA arrays are commonly used for expression profiling, i.e., monitoring expression levels of thousands of genes simultaneously, or for comparative genomic hybridization.






Arrays of DNA can either be spatially arranged, as in the commonly known gene or genome chip, DNA chip, or gene array, or can be specific DNA sequences tagged or labelled such that they can be independently identified in solution. The traditional solid-phase array is a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon chip. The affixed DNA segments are known as probes (although some sources will use different nomenclature such as reporters), thousands of which can be placed in known locations on a single DNA microarray. Microarray technology evolved from Southern blotting, whereby fragmented DNA is attached to a substrate and then probed with a known gene or fragment.





Applications of these arrays include:
  • mRNA or gene expression profiling - Monitoring expression levels for thousands of genes simultaneously is relevant to many areas of biology and medicine, such as studying treatments, disease, and developmental stages. For example, microarrays can be used to identify disease genes by comparing gene expression in diseased and normal cells .

  • comparative genomic hybridization (Array CGH) - Assessing large genomic rearrangements.

  • SNP detection arrays - Looking for Single nucleotide polymorphism in the genome of populations.
  • Chromatin immunoprecipitation (chIP) studies - Determining protein binding site occupancy throughout the genome, employing ChIP-on-chip technology.

Fabrication

Microarrays can be fabricated using a variety of technologies, including printing with fine-pointed pins onto glass slides, photolithography using pre-made masks, photolithography using dynamic micromirror devices, ink-jet printing, or electrochemistry on microelectrode arrays.


DNA microarrays can be used to detect RNAs that may or may not be translated into active proteins. Scientists refer to this kind of analysis as "expression analysis" or expression profiling. Since there can be tens of thousands of distinct probes on an array, each microarray experiment can accomplish the equivalent number of genetic tests in parallel. Arrays have therefore dramatically accelerated many types of investigations.


Spotted microarrays
In spotted microarrays (or two-channel or two-colour microarrays), the probes are oligonucleotides, cDNA or small fragments of PCR products that correspond to mRNAs and are spotted onto the microarray surface. This type of array is typically hybridized with cDNA from two samples to be compared (e.g. diseased tissue versus healthy tissue) that are labeled with two different fluorophores (e.g. Rhodamine (Cyanine 5, red) and Fluorescein (Cyanine 3, green)). The two samples are mixed and hybridized to a single microarray that is then scanned in a microarray scanner to visualize fluorescence of the two fluorophores. Relative intensities of each fluorophore are then used to identify up-regulated and down-regulated genes in ratio-based analysis. Absolute levels of gene expression cannot be determined in the two-colour array, but relative differences in expression among different spots (=genes) can be estimated with some oligonucleotide array.


Oligonucleotide microarrays

Two Affymetrix chips

In oligonucleotide microarrays (or single-channel microarrays), the probes are designed to match parts of the sequence of known or predicted mRNAs. T. These microarrays give estimations of the absolute value of gene expression and therefore the comparison of two conditions requires the use of two separate microarrays.

Oligonucleotide Arrays can be either produced by piezoelectric deposition with full length oligonucleotides or in-situ synthesis.

Long Oligonucleotide Arrays are composed of 60-mers, or 50-mers and are produced by ink-jet printing on a silica substrate. Short Oligonucleotide Arrays are composed of 25-mer or 30-mer and are produced by photolithographic synthesis on a silica substrate or piezoelectric deposition on an acrylamide matrix. More recently, Maskless Array Synthesis from NimbleGen Systems has combined flexibility with large numbers of probes. Arrays can contain up to 390,000 spots, from a custom array design. New array formats are being developed to study specific pathways or disease states for a systems biology approach.

Oligonucleotide microarrays often contain control probes designed to hybridize with RNA spike-ins. The degree of hybridization between the spike-ins and the control probes is used to normalize the hybridization measurements for the target probes.


Genotyping microarrays

DNA microarrays can also be used to read the sequence of a genome in particular positions.

SNP microarrays are a particular type of DNA microarrays that are used to identify genetic variation in individuals and across populations. Short oligonucleotide arrays can be used to identify the single nucleotide polymorphisms (SNPs) that are thought to be responsible for genetic variation and the source of susceptibility to genetically caused diseases. Generally termed genotyping applications, DNA microarrays may be used in this fashion for forensic applications, rapidly discovering or measuring genetic predisposition to disease, or identifying DNA-based drug candidates.

These SNP microarrays are also being used to profile somatic mutations in cancer, specifically loss of heterozygosity events and amplifications and deletions of regions of DNA. Amplifications and deletions can also be detected using comparative genomic hybridization, or aCGH, in conjunction with microarrays, but may be limited in detecting novel Copy Number Polymorphisms, or CNPs, by probe coverage.

Resequencing arrays have also been developed to sequence portions of the genome in individuals. These arrays may be used to evaluate germline mutations in individuals, or somatic mutations in cancers.

Genome tiling arrays include overlapping oligonucleotides designed to blanket an entire genomic region of interest. Many companies have successfully designed tiling arrays that cover whole human chromosomes.