Stem cells are primal cells common to all multi-cellular organisms that retain the ability to renew themselves through cell division and can differentiate into a wide range of specialized cell types. Research in the human stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s
The three broad categories of mammalian stem cells are: embryonic stem cells, derived from blastocysts, adult stem cells, which are found in adult tissues, and cord blood stem cells, which are found in the umbilical cord. In a developing embryo, stem cells are able to differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells.
As stem cells can be readily grown and transformed into specialised cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture, their use in medical therapies has been proposed. In particular, embryonic cell lines, autologous embryonic stem cells generated through therapeutic cloning, and highly plastic adult stem cells from the umbilical cord blood or bone marrow are touted as promising candidates.
Defining properties
The rigorous definition of a stem cell requires that it possesses two properties:
Self-renewal - the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.Unlimited potency - the capacity to differentiate into any mature cell type. In a strict sense, this makes stem cells either totipotent or pluripotent, although some multipotent and/or unipotent progenitor cells are sometimes referred to as stem cells.
These properties can be illustrated in vitro, using methods such as clonogenic assays, where the progeny of single cell is characterized. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. Considerable debate exists whether some proposed adult cell populations are truly stem cells.
Potency definitions
Potency specifies the differentiation potential of the stem cell.
Pluripotent
, embryonic stem cells originate as inner mass cells with in a blastocyst. The stem cells can become any tissue in the body, excluding a placenta. Only the morula's cells are totipotent, able to become all tissues and a placenta.Totipotent stem cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent. These cells can differentiate into embryonic and extraembryonic cell types.
Multipotent stem cells can produce only cells of a closely related family of cells (e.g. hematopoietic stem cells differentiate into red blood cells, white blood cells, platelets, etc.).
Unipotent cells can produce only one cell type, but have the property of self-renewal which distinguishes them from non-stem cells.
Embryonic stem cells
Embryonic stem cell lines (ES cell lines) are cultures of cells derived from the epiblast tissue of the inner cell mass (ICM) of a blastocyst. A blastocyst is an early stage embryo - approximately 4 to 5 days old in humans and consisting of 50-150 cells. ES cells are pluripotent, and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.
Embryonic stem cell
1 comment:
Write comments