Meiosis Animation

In biology, meiosis (IPA: /maɪˈəʊsɪs/) is the process by which one diploid eukaryotic cell divides to generate four haploid cells often called gametes. The word "meiosis" comes from the Greek meioun, meaning "to make smaller," since it results in a reduction in chromosome number in the gamete cell. Among fungi, spores in which the haploid nuclei are at first disseminated are called meiospores, or more specifically, ascospores in asci (Ascomycota) and basidospores on basidia (Basidiomycota).

Meiosis is essential for sexual reproduction and therefore occurs in all eukaryotes, including single-celled organisms that reproduce sexually. A few eukaryotes, notably the Bdelloid rotifers, have lost the ability to carry out meiosis and have acquired the ability to reproduce by parthenogenesis. Meiosis does not occur in archaea or prokaryotes, which reproduce by asexual mitotic cell division.

Meiosis uses many of the same biochemical mechanisms employed during mitosis to accomplish the redistribution of chromosomes. There are several features unique to meiosis, most importantly the pairing and genetic recombination between homologous chromosomes

During meiosis, the genome of a diploid germ cell, which is composed of long segments of DNA packaged into chromosomes, undergoes DNA replication followed by two rounds of division, resulting in haploid cells called gametes. Each gamete contains one complete set of chromosomes, or half of the genetic content of the original cell. These resultant haploid cells can fuse with other haploid cells of the opposite sex or mating type during fertilization to create a new diploid cell, or zygote. Thus, the division mechanism of meiosis is a reciprocal process to the joining of two genomes that occurs at fertilization. Because the chromosomes of each parent undergo genetic recombination during meiosis, each gamete, and thus each zygote, will have a unique genetic blueprint encoded in its DNA. In other words, meiosis and sexual reproduction produce genetic variation.

Occurrence of meiosis in eukaryotic life cycles

Meiosis occurs in all eukaryotic life cycles involving sexual reproduction, comprising of the constant cyclical process of meiosis and fertilization. This takes place alongside normal mitotic cell division. In multicellular organisms, there is an intermediary step between the diploid and haploid transition where the organism grows. The organism will then produce the germ cells that continue in the life cycle. The rest of the cells, called somatic cells, function within the organism and will die with it.

The organism phase of the life cycle can occur between the haploid to diploid transition or the diploid to haploid transition. Some species are diploid, grown from a diploid cell called the zygote. Others are haploid instead, spawned by the proliferation and differentiation of a single haploid cell called the gamete. Humans, for example, are diploid creatures. Human stem cells undergo meiosis to create haploid gametes, which are spermatozoa for males or ova for females. These gametes then fertilize in the Fallopian tubes of the female, producing a diploid zygote. The zygote undergoes progressive stages of mitosis and differentiation, turns into a blastocyst and then gets implanted in the uterus endometrium to create an embryo.

There are three types of life cycles that utilize sexual reproduction, differentiated by the location of the organisms stage.

In the gametic life cycle, of which humans are a part, the living organism is diploid in nature. Here, we will generalize the example of human reproduction stated previously. The organism's diploid germ-line stem cells undergo meiosis to create haploid gametes, which fertilize to form the zygote. The diploid zygote undergoes repeated cellular division by mitosis to grow into the organism. Mitosis is a related process to meiosis that creates two cells that are genetically identical to the parent cell. The general principle is that mitosis creates somatic cells and meiosis creates germ cells.

In the zygotic life cycle, the living organism is haploid. Two organisms of opposing gender contribute their haploid germ cells to form a diploid zygote. The zygote undergoes meiosis immediately, creating four haploid cells. These cells undergo mitosis to create the organism. Many fungi and many protozoa are members of the zygotic life cycle.

Finally, in the sporic life cycle, the living organism alternates between haploid and diploid states. Consequently, this cycle is also known as the alternation of generations. The diploid organism's germ-line cells undergo meiosis to produce gametes. The gametes proliferate by mitosis, growing into a haploid organism. The haploid organism's germ cells then combine with another haploid organism's cells, creating the zygote. The zygote undergoes repeated mitosis and differentiation to become the diploid organism again. The sporic life cycle can be considered a fusion of the gametic and zygotic life cycles, and indeed its diagram supports this conclusion.


Because meiosis is a "one-way" process, it cannot be said to engage in a cell cycle as mitosis does. However, the preparatory steps that lead up to meiosis are identical in pattern and name to the interphase of the mitotic cell cycle.

Interphase is divided into three phases:
Growth 1 (G1) phase: Characterized by increase in cell size due to accelerated manufacture of organelles, proteins, and other cellular matter.
Synthesis (S) phase: The genetic material is replicated: each of its chromosomes duplicates. The cell is still diploid, however, because it still contains the same number of centromeres.
Growth 2 (G2) phase: The cell continues to grow.

Interphase is immediately followed by meiosis I and meiosis II. Meiosis I consists of segregating the homologous chromosomes from each other, then dividing the tetraploid cell into two diploid cells each containing one of the segregates. Meiosis II consists of decoupling each chromosome's sister strands (chromatids), segregating the DNA into two sets of strands (each set containing one of each homolog), and dividing both diploid cells to produce four haploid cells. Meiosis I and II are both divided into prophase, metaphase, anaphase, and telophase subphases, similar in purpose to their analogous subphases in the mitotic cell cycle. Therefore, meiosis encompasses the interphase (G1, S, G2), meiosis I (prophase I, metaphase I, anaphase I, telophase I), and meiosis II (prophase II, metaphase II, anaphase II, telophase II).

Meiosis I
Prophase I

The first stage of prophase I is the leptotene stage, also known as leptonema, from Greek words meaning "thin threads." During this stage, individual chromosomes begin to condense into long strands within the nucleus. However the two sister chromatids are still so tightly bound that they are indistinguishable from one another.

The zygotene stage, also known as zygonema, from Greek words meaning "paired threads,
occurs as the chromosomes approximately line up with each other into homologous chromosomes. The combined homologous chromosomes are said to be bivalent. They may also be referred to as a tetrad, a reference to the four sister chromatids. The two chromatids become "zipped" together, forming the synaptonemal complex, in a process known as synapsis.

The pachytene stage, also known as pachynema, from Greek words meaning "thick threads," heralds crossing over. Nonsister chromatids of homologous chromosomes randomly exchange segments of genetic information over regions of homology. (Sex chromosomes, however, are not identical, and only exchange information over a small region of homology.) Exchange takes place at sites where recombination nodules have formed. The exchange of information between the non-sister chromatids results in a recombination of information; each chromosome has the complete set of information it had before, and there are no gaps formed as a result of the process. Because the chromosomes cannot be distinguished in the synaptonemal complex, the actual act of crossing over is not perceivable through the microscope.

During the diplotene stage, also known as diplonema, from Greek words meaning "two threads," the synaptonemal complex degrades and homologous chromosomes separate from one another a little. The chromosomes themselves uncoil a bit, allowing some transcription of DNA. However, the homologous chromosomes of each bivalent remain tightly bound at chiasmata, the regions where crossing over occurred.

Chromosomes condense further during the diakinesis stage, from Greek words meaning "moving through." This is the first point in meiosis where the four parts of the tetrads are actually visible. Sites of crossing over entangle together, effectively overlapping, making chiasmata clearly visible. Other than this observation, the rest of the stage closely resembles prometaphase of mitosis; the nucleoli disappears, the nuclear membrane disintegrates into vesicles, and the mitotic spindle begins to form.

During these stages, centrioles are migrating to the two poles of the cell. These centrioles, which were duplicated during interphase, function as microtubule coordinating centers. Centrioles sprout microtubules, essentially cellular ropes and poles, during crossing over. They invade the nuclear membrane after it disintegrates, attaching to the chromosomes at the kinetochore. The kinetochore functions as a motor, pulling the chromosome along the attached microtubule toward the originating centriole, like a train on a track. There are two kinetochores on each tetrad, one for each centrosome. Prophase I is the longest phase in meiosis.

Microtubules that attach to the kinetochores are known as kinetochore microtubules. Other microtubules will interact with microtubules from the opposite centriole. These are called nonkinetochore microtubules.

Metaphase I

Homologous pairs move together along the phase plate: as kinetochore microtubules from both centrioles attach to their respective kinetochores, the homologous chromosomes align along an equatorial plane that bisects the spindle, due to continuous counterbalancing forces exerted on the bivalents by the microtubules emanating from the two kinetochores. The physical basis of the independent assortment of chromosomes is the random orientation of each bivalent along the metaphase plate.

Anaphase I

Kinetochore microtubules shorten, severing the recombination nodules and pulling homologous chromosomes apart. Since each chromosome only has one kinetochore, whole chromosomes are pulled toward opposing poles, forming two diploid sets. Each chromosome still contains a pair of sister chromatids. Nonkinetochore microtubules lengthen, pushing the centrioles further apart. The cell elongates in preparation for division down the middle. In prophase 1 the DNA coils tightly and individual chromosomes become visible under the light microscope. Homologous chromosomes closely associated in synapsis and they exchange segments by crossing over.

Telophase I

The first meiotic division effectively ends when the centromeres arrive at the poles. Each daughter cell now has half the number of chromosomes but each chromosome consists of a pair of chromatids. This effect produces a variety of responses from the neuro-synrchromatic enzyme, also known as NSE. The microtubules that make up the spindle network disappear, and a new nuclear membrane surrounds each haploid set. The chromosomes uncoil back into chromatin. Cytokinesis, the pinching of the cell membrane in animal cells or the formation of the cell wall in plant cells, occurs, completing the creation of two daughter cells.

Cells enter a period of rest known as interkinesis or interphase II. No DNA replication occurs during this stage. Note that many plants skip telophase I and interphase II, going immediately into prophase II.

Meiosis II

Prophase II takes an inversely proportional time compared to telophase I. In this prophase we see the disappearance of the nucleoli and the nuclear envelope again as well as the shortening and thickening of the chromatids. Centrioles move to the polar regions and are arranged by spindle fibres. The new equatorial plane is rotated by 90 degrees when compared to meiosis I, perpendicular to the previous plane.

In metaphase II, the centromeres contain three kinetochores, organizing fibers from the centrosomes on each side.

This is followed by anaphase II, where the centromeres are cleaved, allowing the kinetochores to pull the sister chromatids apart. The sister chromatids by convention are now called sister chromosomes, and they are pulled toward opposing poles.

The process ends with telophase II, which is similar to telophase I, marked by uncoiling, lengthening, and disappearance of the chromosomes occur as the disappearance of the microtubules. Nuclear envelopes reform; cleavage or cell wall formation eventually produces a total of four daughter cells, each with a haploid set of chromosomes. Meiosis is now complete.

Significance of meiosis
Meiosis facilitates stable sexual reproduction. Without the halving of ploidy, or chromosome count, fertilization would result in zygotes that have twice the number of chromosomes than the zygotes from the previous generation. Successive generations would have an exponential increase in chromosome count, resulting in an unwieldy genome that would cripple the reproductive fitness of the species. Polyploidy, the state of having three or more sets of chromosomes.

Most importantly, however, meiosis produces genetic variety in gametes that propagate to offspring. Recombination and independent assortment allow for a greater diversity of genotypes in the population. As a system of creating diversity, meiosis allows a species to maintain stability under environmental changes.

The normal separation of chromosomes in Meiosis I or sister chromatids in meiosis II is termed disjunction. When the separation is not normal, it is called nondisjunction. This results in the production of gametes which have either more or less of the usual amount of genetic material, and is a common mechanism for trisomy or monosomy. Nondisjunction can occur in the meiosis I or meiosis II, phases of cellular reproduction, or during mitosis.

This is a cause of several medical conditions in humans, including:
Down's Syndrome - trisomy of chromosome 21
Patau Syndrome - trisomy of chromosome 13
Edward Syndrome - trisomy of chromosome 18
Klinefelter Syndrome - extra X chromosomes in males - ie XXY, XXXY, XXXXY
Turner Syndrome - atypical X chromosome dosage in in females - ie XO, XXX, XXXX
XYY Syndrome - an extra Y chromosome in males

Meiosis in humans
In females, meiosis occurs in precursor cells known as oogonia that divide twice into oocytes. These stem cells stop at the diplotene stage of meiosis I and lay dormant within a protective shell of somatic cells called the follicle. Follicles begin growth at a steady pace in a process known as folliculogenesis, and a small number enter the menstrual cycle. Menstruated oocytes continue meiosis I and arrest at meiosis II until fertilization. The process of meiosis in females is called oogenesis, and differs from the typical meiosis in that it features a long period of meiotic arrest known as the Dictyate stage and lacks the assistance of centrosomes.

In males, meiosis occurs in precursor cells known as spermatogonia that divide twice to become sperm. These cells continuously divide without arrest in the seminiferous tubules of the testicles. Sperm is produced at a steady pace. The process of meiosis in males is called spermatogenesis.

No comments:
Write comments
Recommended Posts × +