Pages

Lac Operon Animation

The lac operon is an operon required for the transport and metabolism of lactose in Escherichia coli and some other enteric bacteria. It consists of three adjacent structural genes, a promoter, a terminator, and an operator. The lac operon is regulated by several factors including the availability of glucose and of lactose. Gene regulation of the lac operon was the first genetic regulatory mechanism to be elucidated and is often used as the canonical example of prokaryotic gene regulation.


The lac operon consists of three structural genes, a promoter, a terminator,(author forgot regulator, please edit this) and an operator. The three structural genes are:: lacZ, lacY, and lacA.


* lacZ encodes β-galactosidase (LacZ), an intracellular enzyme that cleaves the disaccharide lactose into glucose and galactose.
* lacY encodes β-galactoside permease (LacY), a membrane bound transport protein that pumps lactose into the cell.
* lacA encodes β-galactoside transacetylase (LacA), an enzyme that transfers an acetyl group from acetyl-CoA to β-galactosides.

Only lacZ and lacY appear to be necessary for lactose catabolism.

Specific control of the lac genes depends on the availability of the substrate lactose to the bacterium. The proteins are not produced by the bacterium when lactose is unavailable as a carbon source. The lac genes are organized into an operon; that is, they are oriented in the same direction immediately adjacent on the chromosome and are co-transcribed into a single polycistronic mRNA molecule. Transcription of all genes starts with the binding of the enzyme RNA polymerase (RNAP), a DNA-binding protein, to a specific DNA binding site immediately upstream of the genes, the promoter. From this position RNAP proceeds to transcribe all three genes (lacZYA) into mRNA. The DNA sequence of the E. coli lac operon, the lacZYA mRNA, and the lacI genes are available from GenBank (view).


The regulatory response to lactose requires an intracellular regulatory protein called the lactose repressor. The lacI gene encoding repressor lies nearby the lac operon and is always expressed (constitutive). If lactose is missing from the growth medium, the repressor binds very tightly to a short DNA sequence just downstream of the promoter near the beginning of lacZ called the lac operator. Repressor bound to the operator interferes with binding of RNAP to the promoter, and therefore mRNA encoding LacZ and LacY is only made at very low levels. When cells are grown in the presence of lactose, a lactose metabolite called allolactose binds to the repressor, causing a change in its shape. Thus altered, the repressor is unable to bind to the operator, allowing RNAP to transcribe the lac genes and thereby leading to high levels of the encoded proteins.



Genetic nomenclature

Three-letter mnemonics are used to describe phenotypes in bacteria including E. coli.

Examples include:

* Lac (the ability to use lactose),
* His (the ability to synthesize the amino acid histidine)
* Mot (swimming motility)
* Str (response to the antibiotic streptomycin)

In the case of Lac, wild type cells are Lac+ and are able to use lactose as a carbon and energy source, while Lac- mutant derivatives cannot use lactose. The same three letters are typically used (lower-case, italicized) to label the genes involved in a particular phenotype, where each different gene is additionally distinguished by an extra letter. The lac genes encoding enzymes are lacZ, lacY, and lacA. The fourth lac gene is lacI, encoding the lactose repressor---I stands for inducibility.




One may distinguish between structural genes encoding enzymes, and regulatory genes encoding proteins that affect gene expression. Current usage expands the phenotypic nomenclature to apply to proteins: thus, LacZ is the protein product of the lacZ gene, β-galactosidase. Various short sequences that are not genes also affect gene expression, including the lac promoter, lac p, and the lac operator, lac o. Although it is not strictly standard usage, mutations affecting lac o are referred to as lac oc, for historical reasons.



Use in molecular biology


The lac gene and its derivatives are amenable to use as a reporter gene in a number of bacterial-based selection techniques such as two hybrid analysis, in which the successful binding of a transcriptional activator to a specific promoter sequence must be determined. In LB plates containing X-gal, the colour change from white colonies to a shade of blue, corresponds to about 20-100 β-galactosidase units, while tetrazolium lactose and MacConkey lactose media have a range of 100-1000 units, being most sensitive in the high and low parts of this range respectively. Since MacConkey lactose and tetrazolium lactose media both rely on the products of lactose breakdown, they require the presence of both lacZ and lacY genes. The many lac fusion techniques which include only the lacZ gene are thus suited to the X-gal plates or ONPG liquid broths

No comments:
Write comments
Recommended Posts × +