Alanine (abbreviated as Ala or A) is an α-amino acid with the chemical formula CH3CH(NH2)COOH. The L-isomer is one of the 20 proteinogenic amino acids, i.e. the building blocks of proteins. Its codons are GCU, GCC, GCA, and GCG. It is classified as a non-polar amino acid. L-alanine is second only to leucine, accounting for 7.8% of the primary structure in a sample of 1,150 proteins. D-alanine occurs in bacterial cell walls and in some peptide antibiotics.
StructureThe α-carbon atom of alanine is bound with a methyl group (-CH3), making it one of the simplest α-amino acids with respect to molecular structure and also resulting in alanine being classified as an aliphatic amino acid. The methyl group of alanine is non-reactive and is thus almost never directly involved in protein function.
Subscribe in a reader
Physiological function
Alanine plays a key role in glucose-alanine cycle between tissues and liver. In muscle and other tissues that degrade amino acids for fuel, amino groups are collected in the form of glutamate by transamination. Glutamate can then transfer its amino group through the action of alanine aminotransferase to pyruvate, a product of muscle glycolysis, forming alanine and alpha-ketoglutarate. The alanine formed is passed into the blood and transported to the liver. A reverse of the alanine aminotransferase reaction takes place in liver. Pyruvate regenerated forms glucose through gluconeogenesis, which returns to muscle through the circulation system. Glutamate in the liver enters mitochondria and degrades into ammonium ion through the action of glutamate dehydrogenase, which in turn participate in the urea cycle to form urea.
Glucose-alanine cycle enables pyruvate and glutamate to be removed from muscle and find their ways to liver. Glucose is able to be regenerated from pyruvate and returned to muscle. The energetic burden of gluconeogenesis is thus imposed on the liver instead of the muscle. All available ATP in muscle is devoted to muscle contraction.
No comments:
Write comments