Glaucoma is a group of diseases of the optic nerve involving loss of retinal ganglion cells in a characteristic pattern of optic neuropathy. Although raised intraocular pressure is a significant risk factor for developing glaucoma, there is no set threshold for intraocular pressure that causes glaucoma. One person may develop nerve damage at a relatively low pressure, while another person may have high eye pressure for years and yet never develop damage. Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness.
Subscribe in a reader
Glaucoma has been nicknamed the "sneaky thief of sight" because the loss of visual field often occurs gradually over a long time and may only be recognized when it is already quite advanced. Once lost, this damaged visual field can never be recovered. Worldwide, it is the second leading cause of blindness. Glaucoma affects one in two hundred people aged fifty and younger, and one in ten over the age of eighty.
The major risk factor for most glaucomas and focus of modeling and treatment is increased intraocular pressure. Intraocular pressure is a function of production of liquid aqueous humor by the ciliary body of the eye and its drainage through the trabecular meshwork. Aqueous humor flows from the ciliary bodies into the posterior chamber, bounded posteriorly by the lens and the zonule of Zinn and anteriorly by the iris. It then flows through the pupil of the iris into the anterior chamber, bounded posteriorly by the iris and anteriorly by the cornea. From here the trabecular meshwork drains aqueous humor via Schlemm's canal into scleral plexuses and general blood circulation. In open angle glaucoma there is reduced flow through the trabecular meshwork; in angle closure glaucoma, the iris is pushed forward against the trabecular meshwork, blocking fluid from escaping.
The inconsistent relationship of glaucomatous optic neuropathy with ocular hypertension has provoked hypotheses and studies on anatomic structure, eye development, nerve compression trauma, optic nerve blood flow, excitatory neurotransmitter, trophic factor, retinal ganglion cell/axon degeneration, glial support cell, immune, and aging mechanisms of neuron loss.
1 comment:
Write comments