Every single 'beat' of the heart involves five major stages: First, "Late diastole" which is when the semilunar valves close, the Av valves open and the whole heart is relaxed. Second, "Atrial systole" when atria is contracting, AV valves open and blood flows from atrium to the ventricle. Third, "Isovolumic ventricular contraction" it is when the ventricles begin to contract, AV valves close, as well as the semilunar valves and there is no change in volume. Fourth, "ventricular ejection", Ventricles are empty, they are still contracting and the semilunar valves are open.

The fifth stage is: "Isovolumic ventricular relaxation", Pressure decreases, no blood is entering the ventricles, ventricles stop contracting and begin to relax, semilunars are shut because blood in the aorta is pushing them shut. Throughout the cardiac cycle, the blood pressure increases and decreases. The cardiac cycle is coordinated by a series of electrical impulses that are produced by specialized heart cells found within the sino-atrial node and the atrioventricular node. The cardiac muscle is composed of myocytes which initiate their own contraction without help of external nerves

Atrial systole

Atrial systole is the contraction of the heart muscle (myocardia) of the left and right atria. Normally, both atria contract at the same time. The term systole is synonymous with contraction (movement or shortening) of a muscle. Electrical systole is the electrical activity that stimulates the myocardium of the chambers of the heart to make them contract. This is soon followed by Mechanical systole, which is the mechanical contraction of the heart.

As the atria contract, the blood pressure in each atrium increases, forcing additional blood into the ventricles. The additional flow of blood is called atrial kick.

70% of the blood flows passively down to the ventricles, so the atria do not have to contract a great amount.

Atrial kick is absent if there is loss of normal electrical conduction in the heart, such as during atrial fibrillation, atrial flutter, and complete heart block. Atrial kick is also different in character depending on the condition of the heart, such as stiff heart, which is found in patients with diastolic dysfunction.

Detection of atrial systole

Electrical systole of the atria begins with the onset of the P wave on the ECG. The wave of bipolarization (or depolarization) that stimulates both atria to contract at the same time is due to sinoatrial node which is located on the upper wall of the right atrium. 30% of the ventricles are filled during this phase.

Ventricular systole

Ventricular systole is the contraction of the muscles (myocardia) of the left and right ventricles.

At the later part of the ejection phase, although the ventricular pressure falls below the aortic pressure, the aortic valve remains patent because of the inertial energy of the ejected blood.

The graph of aortic pressure throughout the cardiac cycle displays a small dip which coincides with the aortic valve closure. The dip in the graph is immediately followed by a brief rise then gradual decline. The small rise in the graph is known as the "dicrotic notch" or "incisure", and represents a transient increase in aortic pressure. Just as the ventricles enter into diastole, the brief reversal of flow from the aorta back into the left ventricle causes the aortic valves to shut. This results in the slight increase in aortic pressure caused by the elastic recoil of the semilunar valves and aorta.

No comments:
Write comments
Recommended Posts × +