Transfer RNA (tRNA)

Transfer RNA (abbreviated tRNA) is a small RNA molecule (usually about 74-95 nucleotides) that transfers a specific active amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation. It has a 3' terminal site for amino acid attachment. This covalent linkage is catalyzed by an aminoacyl tRNA synthetase. It also contains a three base region called the anticodon that can base pair to the corresponding three base codon region on mRNA. Each type of tRNA molecule can be attached to only one type of amino acid, but because the genetic code contains multiple codons that specify the same amino acid, tRNA molecules bearing different anticodons may also carry the same amino acid.


tRNA has primary structure, secondary structure (usually visualized as the cloverleaf structure), and tertiary structure (all tRNAs have a similar L-shaped 3D structure that allows them to fit into the P and A sites of the ribosome).

1. The 5'-terminal phosphate group.
2. The acceptor stem is a 7-bp stem made by the base pairing of the 5'-terminal nucleotide with the 3'-terminal nucleotide (which contains the CCA 3'-terminal group used to attach the amino acid). The acceptor stem may contain non-Watson-Crick base pairs.
3. The CCA tail is a CCA sequence at the 3' end of the tRNA molecule. This sequence is important for the recognition of tRNA by enzymes critical in translation. In prokaryotes, the CCA sequence is transcribed. In eukaryotes, the CCA sequence is added during processing and therefore does not appear in the tRNA gene.
4. The D arm is a 4 bp stem ending in a loop that often contains dihydrouridine.
5. The anticodon arm is a 5-bp stem whose loop contains the anticodon. It also contains a Y that stands for a modified purine nucleotide.
6. The T arm is a 5 bp stem containing the sequence TΨC where Ψ is a pseudouridine.
7. Bases that have been modified, especially by methylation, occur in several positions outside the anticodon. The first anticodon base is sometimes modified to inosine (derived from adenine) or pseudouridine (derived from uracil).


An anticodon is a unit made up of three nucleotides that correspond to the three bases of the codon on the mRNA. Each tRNA contains a specific anticodon triplet sequence that can base-pair to one or more codons for an amino acid. For example, one codon for lysine is AAA; the anticodon of a lysine tRNA might be UUU. Some anticodons can pair with more than one codon due to a phenomenon known as wobble base pairing. Frequently, the first nucleotide of the anticodon is one of two not found on mRNA: inosine and pseudouridine, which can hydrogen bond to more than one base in the corresponding codon position. In the genetic code, it is common for a single amino acid to be specified by all four third-position possibilities; for example, the amino acid glycine is coded for by the codon sequences GGU, GGC, GGA, and GGG.

To provide a one-to-one correspondence between tRNA molecules and codons that specify amino acids, 61 types of tRNA molecules would be required per cell. However, many cells contain fewer than 61 types of tRNAs because the wobble base is capable of binding to several, though not necessarily all, of the codons that specify a particular amino acid.

Aminoacylation is the process of adding an aminoacyl group to a compound. It produces tRNA molecules with their CCA 3' ends covalently linked to an amino acid.

Each tRNA is aminoacylated (or charged) with a specific amino acid by an aminoacyl tRNA synthetase. There is normally a single aminoacyl tRNA synthetase for each amino acid, despite the fact that there can be more than one tRNA, and more than one anticodon, for an amino acid. Recognition of the appropriate tRNA by the synthetases is not mediated solely by the anticodon, and the acceptor stem often plays a prominent role.


1. amino acid + ATP → aminoacyl-AMP + PPi
2. aminoacyl-AMP + tRNA → aminoacyl-tRNA + AMP

Sometimes, certain organisms can have one or more aminoacyl tRNA synthetases missing. This leads to mischarging of the tRNA by a chemically related amino acid. The correct amino acid is made by enzymes that modify the mischarged amino acid to the correct one.

For example, Helicobacter pylori has glutaminyl tRNA synthetase missing. Thus, glutamate tRNA synthetase mischarges tRNA-glutamine(tRNA-Gln) with glutamate. An amidotransferase then converts the acid side chain of the glutamate to the amide, forming the correctly charged gln-tRNA-Gln.

Binding to ribosome

The ribosome has three binding sites for tRNA molecules: the A (aminoacyl), P (peptidyl), and E (exit) sites. During translation the A site binds an incoming aminoacyl-tRNA as directed by the codon currently occupying this site. This codon specifies the next amino acid to be added to the growing peptide chain. The A site only works after the first aminoacyl-tRNA has attached to the P site. The P-site codon is occupied by peptidyl-tRNA that is a tRNA with multiple amino acids attached as a long chain. The P site is actually the first to bind to aminoacyl tRNA. This tRNA in the P site carries the chain of amino acids that has already been synthesized. The E site is occupied by the empty tRNA as it is about to exit the ribosome.

"Transfer RNA." Wikipedia, The Free Encyclopedia. 12 Jun 2009, 10:13 UTC. 12 Jun 2009 <>.

No comments:
Write comments
Recommended Posts × +