Nerve Growth Factor (NGF) in Alzheimer's disease

Nerve growth factor (NGF) is a small secreted protein that is important for the growth, maintenance, and survival of certain target neurons (nerve cells). It also functions as a signaling molecule.[1][2] It is perhaps the prototypical growth factor, in that it is one of the first to be described. While "nerve growth factor" refers to a single factor,[3] "nerve growth factors" refers to a family of factors also known as neurotrophins.[4] Other members of the neurotrophin family that are well recognized include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin 4/5 (NT-4/5).
Function and mechanism of action

NGF is critical for the survival and maintenance of sympathetic and sensory neurons. Without it, these neurons undergo apoptosis.[5] Nerve growth factor causes axonal growth. Studies have shown that it causes axonal branching and a bit of elongation.[6] NGF binds with at least two classes of receptors: the p75 LNGFR (for "low-affinity nerve growth factor receptor") neurotrophin receptor (p75(NTR)) and TrkA, a transmembrane tyrosine kinase. Both are associated with neurodegenerative disorders.
NGF binds to high-affinity tyrosine kinase receptor TrkA. This phosphorylates TrkA, which leads to the activation of PI 3 Kinase, ras, and PLC signaling pathways.
There is evidence that NGF circulates throughout the entire body and is important for maintaining homeostasis.
There is also evidence that shows that the precursor to NGF, pro-NGF, may also play important roles due to its abundance. These include apoptotic and neurotrophic properties.

No comments:
Write comments
Recommended Posts × +