An Laser tweezer is a scientific instrument that uses a focused laser beam to provide an attractive or repulsive force (typically on the order of piconewtons), depending on the refractive index mismatch to physically hold and move microscopic dielectric objects. Optical tweezers have been particularly successful in studying a variety of biological systems in recent years.
One of the more common cell-sorting systems makes use of flow cytometry through fluorescent imaging. In this method, a suspension of biologic cells is sorted into two or more containers, based upon specific fluorescent characteristics of each cell during an assisted flow. By using an electrical charge that the cell is "trapped" in, the cells are then sorted based on the fluorescence intensity measurements. The sorting process is undertaken by an electrostatic deflection system that diverts cells into containers based upon their charge.
In the optically-actuated sorting process, the cells are flowed through into an optical landscape i.e. 2D or 3D optical lattices. Without any induced electrical charge, the cells would sort based on their intrinsic refractive index properties and can be re-configurability for dynamic sorting. Mike MacDonald, Gabe Spalding and Kishan Dholakia, Nature 426, 421-424 (2003)[1] made use of diffractive optics and optical elements to create the optical lattice. An automated cell sorter was described at the University of Toronto in 2001, but made use of mechanical parameters as opposed to spatial light modulation
"Optical tweezers." Wikipedia, The Free Encyclopedia. 15 Jul 2009, 07:52 UTC. 15 Jul 2009 <http://en.wikipedia.org/w/index.php?title=Optical_tweezers&oldid=302188066>.
No comments:
Write comments