Pages

Urine Formation Animation

Urine formation begins with the process of filtration, which goes on continually in the renal corpuscles . As blood courses through the glomeruli, much of its fluid, containing both useful chemicals and dissolved waste materials, soaks out of the blood through the membranes (by osmosis and diffusion) where it is filtered and then flows into the Bowman's capsule. This process is called glomerular filtration. The water, waste products, salt, glucose, and other chemicals that have been filtered out of the blood are known collectively as glomerular filtrate. The glomerular filtrate consists primarily of water, excess salts (primarily Na+ and K+), glucose, and a waste product of the body called urea. Urea is formed in the body to eliminate the very toxic ammonia products that are formed in the liver from amino acids.



Since humans cannot excrete ammonia, it is converted to the less dangerous urea and then filtered out of the blood. Urea is the most abundant of the waste products that must be excreted by the kidneys. The total rate of glomerular filtration (glomerular filtration rate or GFR) for the whole body (i.e., for all of the nephrons in both kidneys) is normally about 125 ml per minute. That is, about 125 ml of water and dissolved substances are filtered out of the blood per minute. The following calculations may help you visualize how enormous this volume is. The GFR per hour is:

    125 ml/min X 60min/hr= 7500 ml/hr.

    The GFR per day is:
    7500 ml/hr X 24 hr/day = 180,000 ml/day or 180 liters/day.

Now, see if you can calculate how many gallons of water we are talking about. Here are some conversion factors for you to consider: 1 quart = 960 ml, 1 liter = 1000 ml, 4 quarts. = 1 gallon. Remember to cancel units and you will have no problem.

Now, what we have just calculated is the amount of water that is removed from the blood each day - about 180 liters per day. (Actually it also includes other chemicals, but the vast majority of this glomerular filtrate is water.) Imagine the size of a 2-liter bottle of soda pop. About 90 of those bottles equals 180 liters! Obviously no one ever excretes anywhere near 180 liters of urine per day! Why? Because almost all of the estimated 43 gallons of water (which is about the same as 180 liters - did you get the right answer?) that leaves the blood by glomerular filtration, the first process in urine formation, returns to the blood by the second process - reabsorption.
Reabsorption
Reabsorption, by definition, is the movement of substances out of the renal tubules back into the blood capillaries located around the tubules (called the peritubular copillaries). Substances reabsorbed are water, glucose and other nutrients, and sodium (Na+) and other ions. Reabsorption begins in the proximal convoluted tubules and continues in the loop of Henle, distal convoluted tubules, and collecting tubules . Let's discuss for a moment the three main substances that are reabsorbed back into the bloodstream.

Large amounts of water - more than 178 liters per day - are reabsorbed back into the bloodstream from the proximal tubules because the physical forces acting on the water in these tubules actually push most of the water back into the blood capillaries. In other words, about 99% of the 180 liters of water that leave the blood each day by glomerular filtration returns to the blood from the proximal tubule through the process of passive reabsorption.

The nutrient glucose (blood sugar) is entirely reabsorbed back into the blood from the proximal tubules. In fact, it is actively transported out of the tubules and into the peritubular capillary blood. None of this valuable nutrient is wasted by being lost in the urine. However, even when the kidneys are operating at peak efficiency, the nephrons can reabsorb only so much sugar and water. Their limitations are dramatically illustrated in cases of diabetes mellitus, a disease which causes the amount of sugar in the blood to rise far above normal. As already mentioned, in ordinary cases all the glucose that seeps out through the glomeruli into the tubules is reabsorbed into the blood. But if too much is present, the tubules reach the limit of their ability to pass the sugar back into the bloodstream, and the tubules retain some of it. It is then carried along in the urine, often providing a doctor with her first clue that a patient has diabetes mellitus. The value of urine as a diagnostic aid has been known to the world of medicine since as far back as the time of Hippocrates. Since then, examination of the urine has become a regular procedure for physicians as well as scientists.

Sodium ions (Na+) and other ions are only partially reabsorbed from the renal tubules back into the blood. For the most part, however, sodium ions are actively transported back into blood from the tubular fluid. The amount of sodium reabsorbed varies from time to time; it depends largely on how much salt we take in from the foods that we eat. (As stated earlier, sodium is a major component of table salt, known chemically as sodium chloride.) As a person increases the amount of salt taken into the body, that person's kidneys decrease the amount of sodium reabsorption back into the blood. That is, more sodium is retained in the tubules. Therefore, the amount of salt excreted in the urine increases. The process works the other way as well. The less the salt intake, the greater the amount of sodium reabsorbed back into the blood, and the amount of salt excreted in the urine decreases.
Secretion
Now, let's describe the third important process in the formation of urine. Secretion is the process by which substances move into the distal and collecting tubules from blood in the capillaries around these tubules (Figure 3). In this respect, secretion is reabsorption in reverse. Whereas reabsorption moves substances out of the tubules and into the blood, secretion moves substances out of the blood and into the tubules where they mix with the water and other wastes and are converted into urine. These substances are secreted through either an active transport mechanism or as a result of diffusion across the membrane. Substances secreted are hydrogen ions (H+), potassium ions (K+), ammonia (NH3), and certain drugs. Kidney tubule secretion plays a crucial role in maintaining the body's acid-base balance, another example of an important body function that the kidney participates in.

No comments:
Write comments
Recommended Posts × +